DOI QR코드

DOI QR Code

Experimental Study on Flow Noise in a T-Junction Pipe at Different Flow Velocity

유동속도에 따른 T-접합관의 유동소음에 관한 실험적 연구

  • Jian-bin Hu (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Hou-lin Liu (National Research Center of Pumps, Jiangsu University) ;
  • Kai Wang (National Research Center of Pumps, Jiangsu University) ;
  • Guang-xin Ding (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Yu-bo Jin (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • He-ming Liu (Anhui Liuxiang Special Shipbuilding Co., Ltd.) ;
  • Hyoung-bum Kim (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2024.06.15
  • Accepted : 2024.07.12
  • Published : 2024.07.31

Abstract

Using an internal flow noise test bench, this study investigates the variation in internal flow noise at the inlet and outlet monitoring points of a DN100 T-junction pipe under different flow velocities. Results indicate that with increasing flow velocity, both the sound pressure level and total sound pressure level at the inlet and outlet monitoring points increase. The highest total sound pressure level is observed at the vertical outlet monitoring point B, followed by the horizontal inlet monitoring point A, with the lowest at the horizontal outlet monitoring point C. At a constant flow velocity, the sound pressure level at the inlet and outlet points initially increases and then decreases as frequency increases.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant (2021R1A2C1007142) funded by the Korean government (MSIT) and under the framework of an international cooperation program managed by the National Research Foundation of Korea (NRF-2023K2A9A2A06056613).

References

  1. Sakowitz, A., Mihaescu, M., & Fuchs, L., 2014, "Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations," Int. J. Heat Fluid Flow, Vol. 45, pp. 135~146. https://doi.org/10.1016/j.ijheatfluidflow.2013.06.014
  2. Venters, R., Helenbrook, B. T., Ahmadi, G., Bohl, D., & Bluestein, A., 2021, "Flow through an elbow: A direct numerical simulation investigating turbulent flow quantities," Int. J. Heat Fluid Flow, Vol. 90, 108835.
  3. Ikarashi, Y., Uno, T., Yamagata, T., & Fujisawa, N., 2018, "Influence of elbow curvature on flow and turbulence structure through a 90° elbow," Nucl. Eng. Des., Vol. 339, pp. 181~193. https://doi.org/10.1016/j.nucengdes.2018.09.011
  4. Yin, Y., Li, A., Wu, D., Wen, X., Li, J., Guo, J., & Ma, Y., 2022, "Comparison and analysis of energy loss and flow characteristics of T-junctions via secondary flow and entropy production," Build. Environ., Vol. 225, 109635.
  5. Liu, Y. L., Wang, K., & Zhao, L., 2022, "Study on transmission characteristics and factors influencing T-elbow aerodynamic noise in ventilation and air-conditioning pipelines," Indoor Built Environ., Vol. 31(8), pp. 2168~2182. https://doi.org/10.1177/1420326X20952519
  6. Pavic, G., 2003, "Acoustical analysis of pipes with flow using invariant field functions," J. Sound Vib., Vol. 263, PII S0022-460(02)01102-11, pp. 153~174. https://doi.org/10.1016/S0022-460X(02)01102-1
  7. Liu, E. B., Yan, S. K., Wang, D., & Huang, L. Y., 2015, "Large eddy simulation and FW-H acoustic analogy of flow-induced noise in elbow pipe," J. Comput. Theor. Nanosci., Vol. 12(9), pp. 2866~2873. https://doi.org/10.1166/jctn.2015.4191
  8. Lighthill, M. J., 1952, "On sound generated aerodynamically. I. General theory," Proc. R. Soc. A: Math. Phys. Eng. Sci., Vol. 211(1107), pp. 564~587.
  9. Curle, N., 1955, "The influence of solid boundaries upon aerodynamic sound," Proc. R. Soc. Lond., Vol. 231, pp. 505~514. https://doi.org/10.1098/rspa.1955.0191
  10. Powell, A., 1964, "Theory of vortex sound," J. Acoust. Soc. Am., Vol. 36(1), pp. 177~195. https://doi.org/10.1121/1.1918931
  11. Ffowcs Williams, J. E., & Hawkings, D. L., 1969, "Sound generation by turbulence and surfaces in arbitrary motion," Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., Vol. 264(1151), pp. 321~342. https://doi.org/10.1098/rsta.1969.0031
  12. Mori, M., Masumoto, T., & Ishihara, K., 2017, "Study on acoustic, vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section," Appl. Acoust., Vol. 120, pp. 137~147. https://doi.org/10.1016/j.apacoust.2017.01.022
  13. Zhang, C., Li, A., Li, J., Hou, Y., & Chen, X., 2021, "Radiation noise control of a 90° rectangular elbow in ventilation and air conditioning systems," J. Build. Eng., Vol. 37, 102157.
  14. Jain, A., Ewing, D., & Ching, C. Y., 2019, "Time-resolved refractive index matched PIV measurements inside and downstream of a 90° bend," Exp. Therm. Fluid Sci., Vol. 107, pp. 88~106. https://doi.org/10.1016/j.expthermflusci.2019.05.007
  15. Geyer, T. F., Poppe, W., & Sarradj, E., 2018, "Measurement of flow noise generation and pressure loss of nets and screens," Appl. Acoust., Vol. 134, pp. 69~74. https://doi.org/10.1016/j.apacoust.2018.01.008
  16. Salt, E., Mohamed, S., Arthurs, D., & Ziada, S., 2014, "Aeroacoustic sources generated by flow-sound interaction in a T-junction," J. Fluids Struct., Vol. 51, pp. 116~131. https://doi.org/10.1016/j.jfluidstructs.2014.08.005
  17. Zhang, N., Xie, H., Wang, X., & Wu, B., 2016, "Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory," J. Hydrodyn. B, Vol. 28(2), pp. 255~266. https://doi.org/10.1016/S1001-6058(16)60627-3