유체물리 & 전산공학혁신 연구실

Flow Physics & Computational Engineering Innovation Laboratory

  • 최기은 (경희대학교 공과대학 기계공학과) ;
  • 서지완 (경희대학교 공과대학 기계공학과) ;
  • 한경윤 (경희대학교 공과대학 기계공학과) ;
  • 강민준 (경희대학교 공과대학 기계공학과) ;
  • 고유진 (경희대학교 공과대학 기계공학과) ;
  • 서진영 (경희대학교 공과대학 기계공학과) ;
  • 서종민 (경희대학교 공과대학 기계공학과)
  • 발행 : 2024.07.31

초록

키워드

참고문헌

  1. 통계청. 2021 년 사망원인통계. 통계청. 2022. 
  2. Kim GB. Reality of kawasaki disease epidemiology. Korean journal of pediatrics. 2019;62(8):292. 
  3. McCrindle BW et al. Medium-term complications associated with coronary artery aneurysms after kawasaki disease: A study from the international kawasaki disease registry. Journal of the American Heart Association. 2020;9(15):e016440. 
  4. Gutierrez NG et al. Hemodynamic variables in aneurysms are associated with thrombotic risk in children with kawasaki disease. Int J Cardiol. 2019;281:15-21.  https://doi.org/10.1016/j.ijcard.2019.01.092
  5. Hackenberg KA et al. Unruptured intracranial aneurysms: Contemporary data and management. Stroke. 2018;49(9):2268-2275.  https://doi.org/10.1161/STROKEAHA.118.021030
  6. Raymond J, Guillemin F, Proust F, et al. Unruptured intracranial aneurysms: A critical review of the international study of unruptured intracranial aneurysms (ISUIA) and of appropriate methods to address the clinical problem. Interventional Neuroradiology. 2008;14(1):85-96.  https://doi.org/10.1177/159101990801400111
  7. Fukami K, Fukagata K, Taira K. Super- resolution analysis via machine learning: A survey for fluid flows. Theor Comput Fluid Dyn. 2023; 37(4):421-444.  https://doi.org/10.1007/s00162-023-00663-0
  8. Blunt MJ, Bijeljic B, Dong H, et al. Pore-scale imaging and modelling. Adv Water Resour. 2013;51:197-216.  https://doi.org/10.1016/j.advwatres.2012.03.003
  9. Bear J. Dynamics of fluids in porous media. Courier Corporation; 2013. 
  10. Ko BS, Cameron JD, Munnur RK, et al. Noninvasive CT-derived FFR based on structural and fluid analysis: A comparison with invasive FFR for detection of functionally significant stenosis. JACC: Cardiovascular Imaging. 2017;10(6):663-673.  https://doi.org/10.1016/j.jcmg.2016.07.005
  11. Shan X. Analysis and reduction of the spurious current in a class of multiphase lattice boltzmann models. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics. 2006;73(4):047701. 
  12. Andrews M J. Guidelines for Use of Commercial Software and Diagnostics in Articles for the Journal of Fluids Engineering. ASME. J. Fluids Eng. January 2011; 133(1):010201. 
  13. Mirjalili S, Ivey CB, Mani A. Comparison between the diffuse interface and volume of fluid methods for simulating two-phase flows. Int J Multiphase Flow. 2019;116:221-238.  https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.019
  14. Jun B, Shim H, Kim B, et al. Preliminary design of the multi-legged underwater walking robot CR200. 2012:1-4. 
  15. Park J et al. Measurement of hydrodynamic forces and moment acting on crabster, CR200 using model tests. 2017:1-5. 
  16. Seo J. Advancing risk stratification of coronary artery aneurysms caused by kawasaki disease using hemodynamics analysis and computational fluid dynamics. Kawasaki Disease. 2023;1(1). 
  17. McCrindle BW et al. Diagnosis, treatment, and long-term management of kawasaki disease: A scientific statement for health professionals fromthe american heart association. Circulation. 2017;135(17):e927-e999. 
  18. Seo J et al. Physics-based nozzle design rules for high-frequency liquid metal jetting. Phys Fluids. 2022;34(10). 
  19. Herrmann M. A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. Journal of computational physics. 2008;227(4):2674-2706.  https://doi.org/10.1016/j.jcp.2007.11.002