DOI QR코드

DOI QR Code

예인케이블 조출 거동 해석을 위한 모델링 기법

Modeling Method for Simulating The Winding Motion of a Towing Cable

  • 이은택 (국방과학연구소)
  • Euntaek Lee (Researcher, Agency for Defense Development)
  • 투고 : 2024.05.16
  • 심사 : 2024.06.17
  • 발행 : 2024.07.31

초록

본 논문은 윈치드럼과 함께 구성되어 있는 수중 케이블의 거동을 해석하기 위해 개발된 조출 모델링을 소개한다. 케이블의 수중 거동은 장력만 영향을 준다고 가정한다. 이러한 가정은 직진 거동을 하는 함정에 의해 예인되는 수중 케이블 거동을 해석하는데 적합하다. 수중 케이블은 절점 위치유한 요소법으로 차분한다. 이 수치기법은 기하학적 비선형성을 표현할 수 있기 때문에 대변형을 동반하는 수중 케이블의 거동 예측에 적합하다고 알려져 있다. 본 논문은 실제 역 실험에서 계측된 수중 예인케이블의 심도 정보를 활용하여 수치 기법의 타당성을 확보한다.

In this paper, we introduce a newly developed winding model to simulate the motion of underwater cable consisting of winch drums. It is assumed that only tension affects the underwater cable motion. This assumption is suitable for simulating the underwater cable motion towed by a navel vessel in a straight ahead maneuver. The underwater cable is discretized using Nodal Position Finite Element Method. This numerical method is known to be suitable for predicting the underwater cable motion with large deformation because it can express geometric nonlinearity. In this paper, the validity of the numerical method was secured by comparing it with the depth information of towing cable measured through sea experiments.

키워드

참고문헌

  1. Lee, E., et al. "Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method." International Journal of Naval Architecture and Ocean Engineering, vol. 53, no. 5, 2016, pp. 388-399. 
  2. Sun, F. J., Z. H. Zhu, and M. LaRosa. "Dynamic Modeling of Cable Towed Body Using Nodal Position Finite Element Method." Ocean Engineering, vol. 28, no. 4, 2011, pp. 519-718. 
  3. Sun, F. J. Elastodynamic Analysis of Towed Cable Systems by a Novel Nodal Position Finite Element Method. M.S. Thesis, York University, 2009. 
  4. Zhu, Z. H. "Dynamic Modeling of Cable System Using a New Nodal Position Finite Element Method." International Journal for Numerical Methods in Biomedical Engineering, vol. 26, 2010, pp. 692-704. 
  5. Sun, F. J. Elastodynamic Analysis of Towed Cable Systems by a Novel Nodal Position Finite Element Method. Master Thesis, York University, 2010. 
  6. Cottrell, J. A., T. J. R. Hughes, and Y. Bazileves. Isogeometric Analysis. John Wiley & Sons Ltd., 2009. 
  7. Go, G., E. Lee, and H. Ahn. "3D Nonlinear Fully Coupled Simulation of Cable and Tow-Fish System." Journal of Ocean Engineering and Technology, vol. 30, no. 6, 2016, pp. 458-467. 
  8. Go, G., et al. "6DOF Simulation and Determination of Hydrodynamic Derivatives of Underwater Tow-Fish Using CFD." Journal of the Society of Naval Architects of Korea, vol. 53, no. 4, 2016, pp. 315-328. 
  9. Park, J. M., and N. W. Kim. "Dynamic Modeling of a Semi-Submersible Autonomous Underwater Vehicle with a Towfish Towed by Cable." International Journal of Naval Architecture and Ocean Engineering, vol. 7, no. 2, 2015, pp. 409-425. 
  10. Newman, J. N. Marine Hydrodynamics. MIT Press, 1977. 
  11. Bhattacharyya, S. K., C. P. Vendhan, and K. Sudarsan. "The Finite Element Method for Hydroelastic Instability of Underwater Towed Cylindrical Structures." International Journal of Solids and Structures, vol. 237, no. 1, 2000, pp. 119-143. 
  12. Gobat, J. I., and M. A. Grosenbaugh. "Time-Domain Numerical Simulation of Ocean Cable Structures." Ocean Engineering, vol. 33, 2006, pp. 1373-1400. 
  13. Hover, F. S., M. A. Grosenbaugh, and M. S. Triantafyllou. "Calculation of Dynamic Motions and Tensions in Towed Underwater Cables." IEEE Journal of Oceanic Engineering, vol. 19, no. 3, 1994, pp. 449-457. 
  14. Howell, C. T. Investigation of the Dynamics of Low-Tension Cables. Ph.D. Thesis, Woods Hole Oceanographic Institution. 
  15. Fossen, T. I. Guidance and Control of Ocean Vehicles. John Wiley & Sons Ltd., 1994