DOI QR코드

DOI QR Code

음악감상에서의 음질 평가를 위한 한국어 어휘의 의미론적 속성 분석

Analysis of Semantic Attributes of Korean Words for Sound Quality Evaluation in Music Listening

  • 이은영 (소리의원, 이화여자대학교 대학원 음악치료학과) ;
  • 유가을 (이화여자대학교 대학원 음악치료학과) ;
  • 이영미 (이화여자대학교 언어병리학과)
  • Lee, Eun Young (Soree Ear Clinic, Department of Music Therapy, Graduate School, Ewha Womans University) ;
  • Yoo, Ga Eul (Department of Music Therapy, Graduate School, Ewha Womans University) ;
  • Lee, Youngmee (Department of Communication Disorders, Ewha Womans University)
  • 투고 : 2024.07.31
  • 심사 : 2024.08.19
  • 발행 : 2024.08.31

초록

본 연구는 음악감상 시 지각하는 음질(sound quality)을 평가할 때, 어휘를 통한 평가가 음악 유형에 따라 달라지는지 분석하여, 음질 평가 어휘의 의미론적 속성에 대한 기초 자료를 제공하고자 하였다. 평균 9.4년의 전문 훈련을 받은 20-30대의 음악 전공자 31명이 참여하였고, 각 참여자는 성부수와 악기의 소리 산출 방식(악기군)에 따라 구성된 9개 음악을 듣고 음질을 나타내는 18개 의미단어 쌍을 평가하였다. 요인 분석을 통해 동일 요인에 영향을 받는 단어들을 그룹화하였고, 다변량 분산 분석을 통해 각 요인 그룹별로 성부 수와 악기군에 따른 차이를 확인하였다. 또한, 유의한 차이를 보이는 의미 단어 세트를 사용해 레이더 차트를 그려 각 음악별 차이를 시각적으로 분석하였다. 연구 결과, 4개 요인이 추출되었으며, '부드러운-딱딱한', '둔한-날카로운', '지저분한-정돈된', '낮은- 높은'의 단어 쌍이 음악 유형에 따라 유의한 차이를 보였다. 이 4개 단어 쌍을 바탕으로 작성된 레이더 차트는 각 음악에 대한 음질 평가를 구분하는 데 효과적이었다. 이 결과는 한국어 기반 음질평가 어휘 개발 시, 국외 연구에서 보고된 범주와는 다른 구조의 체계가 필요하며, 언어적·문화적 요인의 반영이 중요함을 시사한다. 또한, 교차 감각 대응(cross-modal correspondence)에 기반한 어휘 범주 중에서도 음향적 속성에 민감한 범주가 존재함을 확인하였다. 본 연구는 언어적·문화적 속성과 더불어 음질에 영향을 미치는 음악 요인을 반영할 수 있는 음질 평가 어휘 개발에 필요한 기술자료를 제공할 것으로 기대된다.

This study aims to classify the semantic words commonly used to evaluate sound quality and to analyze their differences in reflecting the level of musical stimuli. Participants were thirty-one music majors in their 20s and 30s, with an average of 9.4 years of professional training. Each participant listened to nine pieces of music with variations in texture and instrument type and evaluated them using 18 pairs of semantic words describing sound quality. A factor analysis was conducted to group words influenced by the same latent factor, and a multivariate ANOVA determined the differences in ratings based on texture and instrument type. Radar charts were also drawn based on the identified sets of semantic words. The results showed that four factors were identified, and the word pairs 'soft-hard,' 'dull-sharp,' 'muddy-clean' and 'low-high' showed significant differences based on the level of musical stimuli. The radar charts effectively distinguished the sound quality evaluations for each music. These results indicate that developing Korean semantic words for sound quality evaluation requires a structure different from the previous categories used in Western countries and that linguistic and cultural factors are crucial. This study will provide foundational data for developing a verbal sound quality evaluation framework suited to the Korean context, while reflecting acoustic attributes in music listening.

키워드

참고문헌

  1. Alluri, V., & Toiviainen, P. (2010). Exploring perceptual and acoustical correlates of polyphonic timbre. Music Perception, 27(3), 223-242.
  2. Alluri, V., & Toiviainen, P. (2012). Effect of enculturation on the semantic and acoustic correlates of polyphonic timbre. Music Perception, 29(3), 297-310. 
  3. American National Standards Institute (2024). American National Standards Institute. Retrieved from https://www.ansi.org/ 
  4. Bannister, S., Greasley, A. E., Cox, T. J., Akeroyd, M. A., Barker, J., Fazenda, B., ... Whitmer, W. M. (2024). Muddy, muddled, or muffled? Understanding the perception of audio quality in music by hearing aid users. Frontiers in Psychology, 15, 1310176. 
  5. Cho, W., & Kim, J. (2013). Analysis of verbal expression for haegum and violin timbre. Journal of the Science and Practice of Music, 30, 101-116. 
  6. Darke, G. (2005). Assessment of timbre using verbal attributes. Proceedings of the Conference on Interdisciplinary Musicology, 1-12. Retrieved from https://www.researchgate.net/profile/Graham-Darke/publication/228675696_Assessment_of_timbre_using_verbal_attributes/links/5af01394aca2727bc0065c61/Assessment-of-timbre-using-verbal-attributes.pdf 
  7. Di Stefano, N., & Spence, C. (2023). Perceptual similarity: Insights from crossmodal correspondences. Review of Philosophy and Psychology, 1-30. 
  8. Disley, A. C., & Howard, D. M. (2003). Timbral semantics and the pipe organ. Proceedings of the Stockholm Music Acoustic Conference, 607-610. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7a56953c67c679b68410542ebd8b36ea50c7b03d 
  9. Disley, A. C., Howard, D. M., & Hunt, A. D. (2006). Timbral description of musical instruments. Proceedings of the International Conference on Music Perception and Cognition, 61-68. Retrieved from https://www.researchgate.net/profile/Andy-Hunt-2/publication/242557004_Timbral_description_of_musical_instruments/links/0deec5293be34ded21000000/Timbral-description-of-musical-instruments.pdf 
  10. Dolan, E. I. (2013). The orchestral revolution: Haydn and the technologies of timbre. Cambridge, England: Cambridge University Press. 
  11. Dolan, E. I., & Rehding, A. (2021). The oxford handbook of timbre. New York, NY: Oxford University Press. 
  12. Elliott, T. M., Hamilton, L. S., & Theunissen, F. E. (2013). Acoustic structure of the five perceptual dimensions of timbre in orchestral instrument tones. The Journal of the Acoustical Society of America, 133(1), 389-404. 
  13. Ethington, R., & Punch, B. (1994). Seawave: A system for musical timbre description. Computer Music Journal, 18(1), 30-39. 
  14. Evans, K. K., & Treisman, A. (2010). Natural cross-modal mappings between visual and auditory features. Journal of Vision, 10(1), 1-12. 
  15. Ferrer, R., & Eerola, T. (2011). Semantic structures of timbre emerging from social and acoustic descriptions of music. EURASIP Journal on Audio, Speech, and Music Processing, 2011, 1-16. 
  16. Fritz, C., Blackwell, A. F., Cross, I., Woodhouse, J., & Moore, B. C. J. (2012). Exploring violin sound quality: Investigating English timbre descriptors and correlating resynthesized acoustical modifications with perceptual properties. The Journal of the Acoustical Society of America, 131(1), 783-794. 
  17. Howard, D. M., & Tyrrell, A. M. (1997). Psychoacoustically informed spectrography and timbre. Organised Sound, 2(2), 65-76. 
  18. Howard, D. M., Disley, A. C., & Hunt, A. D. (2007). Towards a music synthesizer controlled by timbral adjectives. Proceedings of the 14th International Congress on Sound & Vibration, 9-12. Retrieved from https://pure.york.ac.uk/portal/en/publications/towards-a-music-synthesizer-controlled-by-timbral-adjectives 
  19. Ishimitsu, S., Makino, A., Sakamoto, K., Sasaki, K., Sugawara, K., Yanagawa, H., & Yoshimi, T. (2007a). The study of audio equipment evaluations using the sound of music. Proceedings of the 122nd Audio Engineering Society Convention (Report No. 7120). Retrieved from https://aut.ac.nz.libguides.com/APA6th/conferences#s-lg-box-13373657 
  20. Ishimitsu, S., Sakamoto, K., Sugawara, K., Yoshimi, T., Makino, A., & Sasaki, K. (2007b). Study on the Visualization of the Impression of Listening to the Music. Proceedings of Second International Conference on Innovative Computing, 122-122. Retrieved from https://ieeexplore.ieee.org/abstract/document/4427767 
  21. Iwamiya, S. I., & Zhan, M. (1997). A comparison between Japanese and Chinese adjectives which express auditory impressions. Journal of the Acoustical Society of Japan (E), 18(6), 319-323. 
  22. Jiang, W., Liu, J., Zhang, X., Wang, S., & Jiang, Y. (2020). Analysis and modeling of timbre perception features in musical sounds. Applied Sciences, 10(3), 789. 
  23. Kanetada, N., Yamamoto, R., & Mizumachi, M. (2013). Evaluation of sound quality of high resolution audio. Proceedings of the 1st IEEE/IIAE International Conference on Intelligent Systems and Image Processing, 51-56. Retrieved from https://pdfs.semanticscholar.org/adda/26f2189f5e2058653b0a6177e0e1bfab8926.pdf 
  24. Lassaletta, L., Castro, A., Bastarrica, M., Perez-Mora, R., Herran, B., Sanz, L., ... Gavilan, J. (2008). Changes in listening habits and quality of musical sound after cochlear implantation. Otolaryngology-Head and Neck Surgery, 138(3), 363-367. 
  25. Lee, H., & Mullensiefen, D. (2020). The timbre perception test (TPT): A new interactive musical assessment tool to measure timbre perception ability. Attention, Perception, & Psychophysics, 82(7), 3658-3675. 
  26. Lee, S., & Mullensiefen, D. (2020). The timbre perception test (TPT): A new interactive test of musical timbre perception ability. Behavior Research Methods, 52(1), 8-25. 
  27. Letowski, T. (2014). Timbre, tone color, and sound quality: concepts and definitions. Archives of Acoustics, 17(1), 17-30. 
  28. McAdams, S., & Goodchild, M. (2017). Musical structure: Sound and timbre. In R. Ashley, & R. Timmers (Eds.), The routledge companion to music cognition (pp. 129-139). New York, NY: Routledge. 
  29. Moore, B. C., Fullgrabe, C., & Stone, M. A. (2011). Determination of preferred parameters for multichannel compression using individually fitted simulated hearing aids and paired comparisons. Ear and Hearing, 32(5), 556-568. 
  30. Moravec, O., & Stepanek, J. (2005). Verbal descriptions of musical sound timbre and musician's opinion of their usage. Fortschritte der Akustik, 31(1), 231-232. 
  31. Patel, A. D. (2010). Music, language, and the brain. Oxford, England: Oxford university press. 
  32. Pratt, R. L., & Doak, P. E. (1976). A subjective rating scale for timbre. Journal of Sound and Vibration, 45(3), 317-328. 
  33. Reymore, L. (2022). Characterizing prototypical musical instrument timbres with timbre trait profiles. Musicae Scientiae, 26(3), 648-674. 
  34. Reymore, L., & Huron, D. (2018). Identifying the perceptual dimensions of musical instrument timbre. Proceedings of the 15th International Conference on Music Perception and Cognition, 372-377. Retreived from https://shorturl.at/LaGm1 
  35. Reymore, L., & Huron, D. (2020). Using auditory imagery tasks to map the cognitive linguistic dimensions of musical instrument timbre qualia. Psychomusicology: Music, Mind, and Brain, 30(3), 124-144. 
  36. Rosi, V., Houix, O., Misdariis, N., & Susini, P. (2020). Uncovering the meaning of four semantic attributes of sound: Bright, rough, round and warm. Proceedings of Forum Acusticum, 1039-1046. Retreived from https://hal.science/hal-03234057/ 
  37. Shibuya, K., Koyama, T., & Sugano, S. (1999). The relationship between KANSEI and bowing parameters in the scale playing on the violin. Proceedings of IEEE SMC'99 Conference Proceedings, 4, 305-310. Retreived from https://ieeexplore.ieee.org/abstract/document/812418 
  38. Siedenburg, K., Saitis, C., & McAdams, S. (2019). The present, past, and future of timbre research. In K. Siedenburg, C. Satis, & S. McAdams (Eds.), TIMBRE: Acoustics, Perception, and Cognition (pp. 1-19). Cham, Switzerland: Springer Cham. 
  39. Stepanek, J. (2006). Musical sound timbre: Verbal description and dimensions. Proceedings of the 9th International Conference on Digital Audio Effects, 121-126. Retreived from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=27712b75db50612863a3bab04d16b7e2569304e4#page=131 
  40. Thiering, M. (2014). Spatial semiotics and spatial mental models: Figure-ground asymmetries in language (Vol. 27). Berlin, Germany: Walter de Gruyter GmbH & Co KG. 
  41. Town, S. M., & Bizley, J. K. (2013). Neural and behavioral investigations into timbre perception. Frontiers in Systems Neuroscience, 7, 1-14. 
  42. von Bismarck, G. (1974). Timbre of steady sounds: A factorial investigation of its verbal attributes. Acta Acustica united with Acustica, 30(3), 146-159. 
  43. Walker, P. (2016). Cross-sensory correspondences: A theoretical framework and their relevance to music. Psychomusicology: Music, Mind, and Brain, 26(2), 103-116. 
  44. Wallmark, Z. (2019a). Semantic crosstalk in timbre perception. Music & Science, 2, 1-18. 
  45. Wallmark, Z. (2019b). A corpus analysis of timbre semantics in orchestration treatises. Psychology of Music, 47(4), 1-21. 
  46. Wallmark, Z. T. (2014). Appraising timbre: Embodiment and affect at the threshold of music and noise (Unpublished doctoral dissertation). University of California, LA. 
  47. Wallmark, Z., Iacoboni, M., Deblieck, C., & Kendall, R. A. (2017). Embodied listening and timbre: Perceptual, acoustical, and neural correlates. Music Perception: An Interdisciplinary Journal, 35(3), 332-363. 
  48. Wallmark, Z., Nghiem, L., & Marks, L. E. (2021). Does timbre modulate visual perception? Exploring crossmodal interactions. Music Perception: An Interdisciplinary Journal, 39(1), 1-20. 
  49. Zacharakis, A., Pastiadis, K., Papadelis, G., & Reiss, J. D. (2011). An investigation of musical timbre: Uncovering salient semantic descriptors and perceptual dimensions. Proceedings of the 12th International Society for Music Information Retrieval Conference, 807-812. Retreived from https://www.eecs.qmul.ac.uk/~josh/documents/2011/ZacharakisReiss-2011-ISMIR.pdf 
  50. Zacharakis, A., & Pastiadis, K. (2015). A confirmatory approach of the luminance-texture-mass model for musical timbre semantics. Proceedings of the Audio Mostly 2015 on Interaction with Sound, 1-5. Retreived from https://dl.acm.org/doi/pdf/10.1145/2814895.2814898 
  51. Zacharakis, A., Pastiadis, K., & Reiss, J. D. (2014). An interlanguage study of musical timbre semantic dimensions and their acoustic correlates. Music Perception: An Interdisciplinary Journal, 31(4), 339-358.