DOI QR코드

DOI QR Code

Multivariate statistical study on naturally occurring radioactive materials and radiation hazards in lakes around a Chinese petroleum industrial area

  • Yan Shi (Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University) ;
  • Junfeng Zhao (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Baiyao Ding (Key Laboratory of Nuclear Technology Application, Heilongjiang Institute of Atomic Energy) ;
  • Yue Zhang (College of Nuclear Science and Technology, Harbin Engineering University) ;
  • Zhigang Li (Key Laboratory of Nuclear Technology Application, Heilongjiang Institute of Atomic Energy) ;
  • Mohsen M.M.Ali (National Atomic Energy Commission-Yemen (NATEC)) ;
  • Tuya Siqin (Key Laboratory of Nuclear Technology Application, Heilongjiang Institute of Atomic Energy) ;
  • Hongtao Zhao (Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic ) ;
  • Yongjun Liu (Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic ) ;
  • Weiguo Jiang (Ecological and Environmental Monitoring Center of Jiamusi, Heilongjiang Province) ;
  • Peng Wu (Nuclear and Radiation Safety Center)
  • 투고 : 2023.06.27
  • 심사 : 2024.01.18
  • 발행 : 2024.06.25

초록

The high-purity germanium gamma-ray spectrometer was used to measure the radioisotope in surface water of lakes in a Chinee petroleum industrial area. 92 samples were collected from surface water of three lakes. Activity concentrations of 232Th, 226Ra and 40K in three lakes were measured, distributed in the range of 101.8-209.4, 192.1-224.9 and 335.0-548.9 mBq/L, respectively. Results were all within the limits of WHO and China. Potential environmental and health risks were assessed by calculating some radiation hazard indicators, radium equivalent index, annual effective dose, excess lifetime cancer risk, absorbed dose rate, external hazard index, internal hazard index, annual gonadal dose equivalent, activity utilization index and representative gamma index, which ranged 0.38-0.54 Bq/L, 0.06-0.08 mSv/y, 0.23 × 10-3-0.31 × 10-3, 0.17-0.24 nGy/h, 1.01 × 10-3-1.46 × 10-3, 1.55 × 10-3-2.02 × 10-3, 1.16-1.66 μSv/y, 3.13 × 10-3-4.45 × 10-3 and 2.60 × 10-3-3.77 × 10-3. The results were all at acceptable levels, meaning no impact on human health. The relationship between the electrical conductivity of surface water and the activity concentration of 232Th, 226Ra and 40K was evaluated. The electrical conductivity value was 0.241-0.369 mS/cm, showing a significant correlation coefficient between 226Ra and 40K and electrical conductivity. Multivariate statistical methods were used to determine the relationship between the activity concentrations of 232Th, 226Ra, and 40K, radiation hazard indicators and electrical conductivity.

키워드

과제정보

This work was supported by the Scientific Research Business Fee Project of Heilongjiang Provincial Scientific Research Institutes (CZKYF2021-2-B003), Ecological Environment Protection Scientific Research Project in Heilongjiang Province (HST2022H001), Youth Innovation Fund Project of Heilongjiang Academy of Sciences (CXMS2023YZNY01 and CXMS2023YZNY02).

참고문헌

  1. M.M.M. Ali, H.T. Zhao, Z.H. Li, A.A.T. Ayoub, A review about radioactivity in TENORMs of produced water waste from petroleum industry and its environmental and health effects, IOP Conf. Ser, Earth Environ. Sci. 467 (2020) 12120. https://doi.org/10.1088/1755-1315/467/1/012120
  2. IOGP, International Association of Oil & Gas Producers, Managing Naturally Occurring Radioactive Material (NORM) in the Oil and Gas Industry, IOGP Publication, London, 2016.
  3. A.S. Paschoa, Naturally occurring radioactive materials (NORM) and petroleum origin, Appl. Radiat. Isot. 48 (10-12) (1997) 1391-1396. https://doi.org/10.1016/S0969-8043(97)00134-6
  4. M. Begum, R. Khan, S.M. Hossain, S.M. Al Mamun, Redistributions of NORMs in and around a gas-field (Shabazpur, Bangladesh): radiological risks assessment, J. Radioanal. Nucl. Chem. 331 (1) (2022) 317-330. https://doi.org/10.1007/s10967-021-08107-x
  5. Y. Shi, W. Gao, T. Siqin, Z. Li, J. Zhang, R. Guan, J. Li, P. Sun, H. Zhao, The gross α and β radioactivity levels of drinking water source in one oil industrial city in northeast China, Radiat. Med, Protect. Met. 2 (2) (2021) 61-66. https://doi.org/10.1016/j.radmp.2021.04.005
  6. S.V. Avery, Fate of caesium in the environment: distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems, J. Environ. Radioact. 30 (2) (1996) 139-171. https://doi.org/10.1016/0265-931X(96)89276-9
  7. S. Akyil, S. Aytas, D.A. Turkozu, M.A. Aslani, S.D. Yusan, M. Eral, Radioactivity levels in surface water of lakes around Izmir/Turkey, Radiat, Meas 44 (4) (2009) 390-395. https://doi.org/10.1016/j.radmeas.2009.04.013
  8. N. Ahmad, J. ur Rehman, J. Rehman, G. Nasar, Effect of geochemical properties (pH, conductivity, TDS) on natural radioactivity and dose estimation in water samples in Kulim, Malaysia, Hum. Ecol. Risk. Assess: Int. J. 25 (7) (2019) 1688-1696. https://doi.org/10.1080/10807039.2018.1526633
  9. D.C. Lauria, R.M.R. Almeida, O. Sracek, Behavior of radium, thorium and uranium in groundwater near the Buena Lagoon in the Coastal zone of the state of rio de Janeiro, Environ. Geol. 47 (2004) 11-19. https://doi.org/10.1007/s00254-004-1121-1
  10. K.M. Zakaria, Radiological impacts of NORM and poly aromatic hydrocarbon in petroleum industry process on marine ecosystem at the Red Sea, Egypt, Environ. Anal. Ecol. Stud 1 (4) (2018) 68-78. https://doi.org/10.31031/EAES.2018.01.000516
  11. T. Alharbi, A. Adel, M.A. Baloch, S.F. Alsagabi, Y.A. Alssalim, A.S. Alslamah, N. Alkhomashi, Natural radioactivity measurements and age-dependent dose assessment in groundwater from Al-Zulfi, Al-Qassim, and Al-Majmaah regions, Saudi Arabia, J. Radioanal. Nucl. Chem. 318 (2) (2018) 935-945. https://doi.org/10.1007/s10967-018-6053-4
  12. M.M.M. Ali, H.T. Zhao, Z.H. Li, O.M.H. Ahmed, I. Alfasatleh, N.N.M. Maglas, The impact of the oil and gas industry on NORMs of groundwater and their annual effective dose in Ma'rib, central Yemen,, Acta Geophys. 68 (5) (2020) 1421-1431. https://doi.org/10.1007/s11600-020-00482-5
  13. United Unscear, Nations scientific committee on the effects of atomic radiation, sources and effects of ionizing radiation, in: United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, ume I, United Nations Publication, New York, 2000.
  14. J. Beretka, P.J. Matthew, Natural radioactivity of Australian building materials, industrial wastes and by-products, Health. Phys. 48 (1985) 87-95. https://doi.org/10.1097/00004032-198501000-00007
  15. United Unscear, Nations scientific committee on the effects of atomic radiation, sources and effects of ionizing radiation, in: United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 Report, ume I, United Nations Publication, New York, 2008.
  16. World WHO, Health organization. Guidelines for Drinking-Water Quality, fourth ed., WHO Publication, Genova, 2011.
  17. ICRP, International commission on radiological protection, compendium of dose coefficients based on ICRP publication 60, ICRP publication 119 Ann. 41 (2012) 1-130. https://doi.org/10.1016/j.icrp.2012.06.038
  18. M.M.M. Ali, H.T. Zhao, N. Yassin, A.A. Al-Shami, W. Alquraishi, I. Alfasatleh, O. Alqudah, Multivariate statistical study of technologically enhanced naturally occurring radioactive materials and radiation hazards in crude oil and petroleum products of Ma'rib refinery, Yemen, J. Clean. Prod. 298 (2021) 126772.
  19. M.F. Attallah, H.M. Abdelbary, E.A. Elsofany, Y.T. Mohamed, M.M. Abo-Aly, Radiation safety and environmental impact assessment of sludge TENORM waste produced from petroleum industry in Egypt, Process Saf. Environ. Protect. 142 (2020) 308-316. https://doi.org/10.1016/j.psep.2020.06.012
  20. R. Ravisankar, K. Vanasundari, M. Suganya, Y. Raghu, A. Rajalakshmi, A. Chandrasekaran, S. Sivakumar, J. Chandramohan, P. Vijayagopal, B. Venkatraman, Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India, Appl. Radiat. Isot. 85 (2014) 114-127. https://doi.org/10.1016/j.apradiso.2013.12.005
  21. G.M. Shilpa, B.N. Anandaram, T.L. Mohankumari, Measurement of activity concentration of primordial radionuclides in soil samples from Thirthahalli taluk and the assessment of resulting radiation dose, J. Radioanal. Nucl. Chem. 316 (2018) 501-511. https://doi.org/10.1007/s10967-018-5788-2
  22. A.S. Alaboodi, N.A. Kadhim, A.A. Abojassim, A.B. Hassan, Radiological hazards due to natural radioactivity and radon concentrations in water samples at Al-Hurrah city, Iraq, Int. J. Radiat. Rese 18 (1) (2020) 1-11.
  23. B.A. Almayahi, A.A. Tajuddin, M.S. Jaafar, Radiation hazard indices of soil and water samples in Northern Malaysian Peninsula, Appl. Radiat. Isot. 70 (11) (2012) 2652-2660. https://doi.org/10.1016/j.apradiso.2012.07.021
  24. B. Cetin, B. Canimkurbey, M. Gul, Boraboy Lake from Amasya Turkey: natural radioactivity and heavy metal content in water, sediment, and soil, Arabian J. Geosci. 15 (6) (2022) 1-13. https://doi.org/10.1007/s12517-021-09265-8
  25. Z, Morsy, M.A. El-Wahab, N. El-Faramawy, Determination of natural radioactive elements in Abo Zaabal, Egypt by means of gamma spectroscopy, Ann. Nucl. Energy 44 (2012) 8-11. https://doi.org/10.1016/j.anucene.2012.01.003
  26. N.F. Salih, Measurement of natural radioactivity levels in drinking water by gamma spectrometry, Arabian J. Geosci. 15 (12) (2022) 1-15. https://doi.org/10.1007/s12517-021-09265-8
  27. T. Dindaroglu, The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover,, J. Environ. Health. Sci. Engineer 12 (130) (2014) 1-11. https://doi.org/10.1186/s40201-014-0130-6
  28. P. Pandit, P. Mangala, A. Saini, P. Bangotra, V. Kumar, R. Mehra, D. Ghosh, Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the siwalik region (India), Chemosphere 254 (2020) 126857.
  29. AMR, State Administration for Market Regulation, SAC, Standardization Administration of China, GB 5749-2022 Standards for Drinking Water Quality, Beijing, 2022.
  30. M.U. Khandaker, O.B. Uwatse, K.A. Bin Shamsul Khairi, M.R.I. Faruque, D.A. Bradley, Terrestrial radionuclides in surface (dam) water and concomitant dose in metropolitan Kuala Lumpur, Radiat. Protect. Dosim. 185 (3) (2019) 343-350. https://doi.org/10.1093/rpd/ncz018
  31. P. Tchokossa, J.B. Olomo, F.A. Balogun, Assessment of radionuclide concentration and absorbed dose from consumption of community water supplies in oil and gas producing areas in delta State Nigeria, World J. Nucl. Sci. Technol. 1 (2010) 77-86. https://doi.org/10.4236/wjnst.2011.13012
  32. S. Shawky, H. Amer, A.A. Nada, T. El-Maksoud, N.M. Ibrahiem, Characteristics of norm in the oil industry from eastern and western deserts of Egypt, Appl. Radiat. Isot. 55 (1) (2001) 135-139. https://doi.org/10.1016/S0969-8043(00)00364-X
  33. E.O. Agbalagba, G.O. Avwiri, C.P. Ononugbo, Activity concentration and radiological impact assessment of 226Ra, 228Ra and 40K in drinking waters from (OML) 30, 58 and 61 oil fields and host communities in Niger Delta region of Nigeria, J. Environ. Radioact. 116 (2013) 197-200. https://doi.org/10.1016/j.jenvrad.2012.08.017
  34. E. Botezatu, C. Grecea, Radiological impact assessment on behalf of oil/gas industry, J. Prev. Med 12 (1-2) (2004) 16-21. https://doi.org/10.1016/S1359-6128(04)00619-6
  35. A. Altikulac, S. Turhan, H. Gumus, the natural and artificial radionuclides in drinking water samples and consequent population doses,, J. Radiat. Res. Appl. Sc 8 (4) (2015) 578-582. https://doi.org/10.1016/j.jrras.2015.06.007
  36. M. Beyermann, T. Bunger, K. Schmidt, D. Obrikat, Occurrence of natural radioactivity in public water supplies in Germany: 238U, 234U, 235U, 228Ra, 226Ra, 222Rn, 210Pb, 210Po and gross α activity concentrations, Radiat. Protect. Dosim. 141 (1) (2010) 72-81. https://doi.org/10.1093/rpd/ncq139
  37. Z. Zhao, S. Mu, F. Fan, B.X. Zhang, Z.J. Yang, G.L. Wu, Investigation of environmental radioactivity level around a decommissioned uranium mine in western Yunnan, Chin, J. Radiol. Health 28 (1) (2019) 80-84.
  38. A. Malanca, M. Repetti, H.R. De Macedo, Gross alpha and beta-activities in surface and groundwater of Rio Grando do Norte, Appl. Radiat. Isot. 49 (7) (1998) 893-898. https://doi.org/10.1016/S0969-8043(97)00298-4
  39. H. Amano, T. Matsunaga, S. Nagao, Y. Hanzawa, M. Watanabe, T. Ueno, Y. Onuma, The transfer capability of long-lived Chernobyl radionuclides from surface soil to river water in dissolved forms, Org, Geochem. (Tokyo. 1967) 30 (6) (1999) 437-442. https://doi.org/10.1016/S0146-6380(99)00028-5
  40. Z. Donne, M. Rasolonirina, H.C. Djaovagnono, B. Kall, N. Rabesiranana, J. Rajaobelison, Study of water radioactivity transfer from telluric origin in the Amber Mountain, Antsiranana, Madagascar, Sci, Afr 13 (2021) e00902.
  41. Y. Liu, W. Zhou, B. Gao, Z. Zheng, G. Chen, Q. Wei, Y. He, Determination of radionuclide concentration and radiological hazard in soil and water near the uranium tailings reservoir in China, Env. Pollut. Bioavail 33 (1) (2021) 174-183. https://doi.org/10.1080/26395940.2021.1951123
  42. A. Konoplev, Y. Wakiyama, T. Wada, Y. Igarashi, Behavior of fukushima-derived radiocesium in the soil-water environment, in: K. Nanba, A. Konoplev, T. Wada (Eds.), Behavior of Radionuclides in the Environment III, Springer., Singapore, 2022, pp. pp.33-68.
  43. S.B. Samat, S. Green, A.H. Beddoe, The activity of one gram of potassium,, Phys. Med. Biol. 42 (2) (1997) 407.
  44. H. Bu, X. Tan, S. Li, Q. Zhang, Temporal and spatial variations of water quality in the jinshui river of the south qinling mts., China, Ecotoxicol. Environ. Saf. 73 (5) (2010) 907-913. https://doi.org/10.1016/j.ecoenv.2009.11.007
  45. J. Sardans, J. Penuelas, Potassium: a neglected nutrient in global change, Global Ecol. Biogeogr. 24 (3) (2015) 261-275. https://doi.org/10.1111/geb.12259
  46. F. Ahmad, K. Morris, G.T. Law, K.G. Taylor, S. Shaw, Fate of radium on the discharge of oil and gas produced water to the marine environment, Chemosphere 273 (2021) 129550.
  47. K.F. Majeed, E. Salama, S.A. Elfiki, Y.M.Z. Al-Bakhat, Natural radioactivity assessment around the petroleum-producing areas of The-Qar province, Iraq, Environ. Earth Sci. 80 (2) (2021) 1-7. https://doi.org/10.1007/s12665-020-09327-2
  48. N. Hamza, Review about NORM concentration and behavior in produced water from oilfield activities and its assessment methodology for human exposure, World. J. Res. Rev. 14 (3) (2022) 1-7. https://doi.org/10.31871/WJRR.14.3.10
  49. M.F. Attallah, E.M. El Afifi, N.S. Awwad, H.F. Aly, Comparative study on the radioactivity of TE-NORM in different components of oil separator tanks, Radiochim. Acta 101 (1) (2013) 57-65. https://doi.org/10.1524/ract.2013.1996
  50. C. Directive, On the quality of water intended for human consumption, Off. J. Eur. Communities 330 (1998) 32-54.
  51. M. Zhang, Y. Wu, W. Li, Y. Xu, P. Li, L. Huang, Water quality evolution analysis of the Mishan reservoir based on electrical conductivity, J. Univ. Jinan 35 (5) (2021) 480-486.
  52. A. Abbasi, F. Mirekhtiary, Some physicochemical parameters and 226Ra concentration in groundwater samples of North Guilan, Iran, Chemosphere 256 (2020) 127113.
  53. M.F. Attallah, M.A. Hilal, S.I. Moussa, Quantification of some elements of nuclear and industrial interest from zircon mineral using neutron activation analysis and passive gamma-ray spectroscopy, Appl. Radiat. Isot. 128 (2017) 224-230. https://doi.org/10.1016/j.apradiso.2017.07.018
  54. R.A. Groeneveld, G. Meeden, Measuring skewness and kurtosis, J. R. Stat. Soc. Ser 33 (4) (1984) 391-399. https://doi.org/10.2307/2987742
  55. I. Tanaskovic, D. Golobocanin, N. Miljevic, Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters, J. Geochem. Explor. 112 (2012) 226-234. https://doi.org/10.1016/j.gexplo.2011.08.014