Acknowledgement
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
References
- M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. 53 (2021) 2000-2010. https://doi.org/10.1016/j.net.2020.12.012
- O.L. Tashlykov, A.M. Grigoryev, Y.A. Kropachev, Reducing the exposure dose by optimizing the route of personnel movement when visiting specified points and taking into account the avoidance of obstacles, Energies 15 (2022) 8222, https://doi.org/10.3390/en15218222.
- A.F. Mikhailova, O.L. Tashlykov, The ways of implementation of the optimization principle in the personnel radiological protection, Phys. Atom. Nucl. 83 (2020) 1718-1726, https://doi.org/10.1134/S1063778820100154.
- K.A. Mahmoud, O.L. Tashlykov, M.H.A. Mhareb, A.H. Almuqrin, Y.S.M. Alajerami, M.I. Sayyed, A new heavy-mineral doped clay brick for gamma-ray protection purposes, Appl. Radiat. Isot. 173 (2021) 109720, https://doi.org/10.1016/j.apradiso.2021.109720.
- M.I. Sayyed, K.A. Mahmoud, S. Islam, O.L. Tashlykov, E. Lacomme, K.M. Kaky, Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates, Radiat. Phys. Chem. 174 (2020), https://doi.org/10.1016/j.radphyschem.2020.108925.
- S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94, https://doi.org/10.1016/j.radphyschem.2018.02.026.
- H. Durak, E. Kavaz, B. Oto, A. Aras, The impact of Co addition on neutron-photon protection characteristics of red and yellow clays-based bricks: an experimental study, Prog. Nucl. Energy 143 (2022) 104047, https://doi.org/10.1016/j.pnucene.2021.104047.
- H.S. Mann, G.S. Brar, G.S. Mudahar, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks, Radiat. Phys. Chem. 127 (2016) 97-101, https://doi.org/10.1016/j.radphyschem.2016.06.013.
- K.A. Mahmoud, A.M.A. El-Soad, E.G. Kovaleva, N. Almousa, M.I. Sayyed, O. L. Tashlykov, Modeling a three-layer container based on halloysite nano-clay for radioactive waste disposal, Prog. Nucl. Energy 152 (2022), https://doi.org/10.1016/j.pnucene.2022.104379.
- K.S. Mann, M.S. Heer, A. Rani, Investigation of clay bricks for storage facilities of radioactive-wastage, Appl. Clay Sci. 119 (2016) 249-256, https://doi.org/10.1016/j.clay.2015.10.022.
- B.S. Sidhu, A.S. Dhaliwal, K.S. Kahlon, S. Singh, On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste, Nucl. Eng. Technol. 54 (2022) 674-680, https://doi.org/10.1016/j.net.2021.08.006.
- N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M. S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), https://doi.org/10.1016/j.radphyschem.2022.110004.
- A.M. Abd El-Hamid, M.A. Zahran, F.M. Khalid, A.H. Mahmoud, Leaching of hafnium, zirconium, uranium and other nuclear economic elements from petroleum ash, RSC Adv. 4 (2014) 12506, https://doi.org/10.1039/c3ra44523b.
- I.Y. Hakeem, Md Akter Hosen, B.A. Tayeh, A. Alhamami, Innovative Ultra-High Performance Concrete (UHPC) Incorporating oil ash and electric arc furnace dust, Case Stud. Constr. Mater. 18 (2023) e01843, https://doi.org/10.1016/j.cscm.2023.e01843.
- M.H. Al-Malack, G.M. Abdullah, O.S.B. Al-Amoudi, A.A. Bukhari, Stabilization of indigenous Saudi Arabian soils using fuel oil flyash, Journal of King Saud University - Engineering Sciences 28 (2016) 165-173, https://doi.org/10.1016/j.jksues.2014.04.005.
- T. Husain, M. Ahmad, Low cost adsorbent to reduce disinfection by-products from drinking water in small communities, in: Environmental Engineering and Computer Application, CRC Press, 2015, pp. 99-104, https://doi.org/10.1201/b18565-22.
- S.M. Abd-Allah, O.M. El Hussaini, R.M. Mahdy, Towards A more safe environment: (2) characterization of some clay sediments in Egypt for safe environmental applications, Aust J Basic Appl Sci 1 (2007) 813-823.
- J.M. Huggett, CLAY MINERALS, in: Encyclopedia of Geology, Elsevier, 2005, pp. 358-365, https://doi.org/10.1016/B0-12-369396-9/00273-2.
- H. Abd El-Naby, W. Frisch, Geochemical constraints from the hafafit metamorphic complex (HMC): evidence of neoproterozoic back-arc basin development in the central eastern desert of Egypt, J. Afr. Earth Sci. 45 (2006) 173-186, https://doi.org/10.1016/j.jafrearsci.2006.02.006.
- M.I. Sayyed, K.A. Mahmoud, E. Lacomme, Maha M. AlShammari, Nidal Dwaikat, Y. S.M. Alajerami, Muna Alqahtani, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications, Eur. Phys. J. Plus. 136 (1) (2021) 108.
- E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics, J. Phys. Chem. Solid. 164 (2022), https://doi.org/10.1016/j.jpcs.2022.110627.
- X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, La-Ur-03-1987 II, 2003, Version 5.
- S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (2018) 900-914, https://doi.org/10.1080/10420150.2018.1505890.
- D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids 503-504 (2019) 158-168, https://doi.org/10.1016/j.jnoncrysol.2018.09.038.
- A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program, J. Non-Cryst. Solids 543 (2020), https://doi.org/10.1016/j.jnoncrysol.2020.120134.
- G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses, Appl. Phys. Mater. Sci. Process 127 (2021), https://doi.org/10.1007/s00339-021-04409-9.
- H.Z. Harraz, M.M. Hamdy, Interstratified vermiculite-mica in the gneiss-metapelite-serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: from metasomatism to weathering, J. Afr. Earth Sci. 58 (2010) 305-320, https://doi.org/10.1016/j.jafrearsci.2010.03.009.
- Q. Huang, J. Jiang, L. Glasses, The gamma-ray and neutron shielding factors of flyash brick materials the gamma-ray and neutron shielding factors of fly-ash brick materials, J. Radiol. Prot. 34 (2014) 89-101, https://doi.org/10.1088/0952-4746/34/1/89.
- S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium-borate-flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 140-146, https://doi.org/10.1016/j.nimb.2007.10.018.
- E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, Investigation of kaolin - granite composite bricks for gamma radiation shielding, International Journal of Advanced Nuclear Reactor Design and Technology 3 (2021) 194-199, https://doi.org/10.1016/j.jandt.2021.09.007.
- H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236, https://doi.org/10.1016/j.net.2016.04.001.
- B. Dogan, N. Altinsoy, Investigation of Photon Attenuation Coefficient of Some Building Materials Used in Turkey, 2015 020033, https://doi.org/10.1063/1.4914224.
- H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598, https://doi.org/10.1007/s10064-018-1391-6.
- H. Share Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Permeability and gamma-ray shielding efficiency of clay modified by barite powder, Geotech. Geol. Eng. 37 (2019) 845-855, https://doi.org/10.1007/s10706-018-0654-0.
- K.A. Mahmoud, M.W. Marashdeh, Clay-based bricks' rich illite mineral for gamma-ray shielding applications: an experimental evaluation of the effect of pressure rates on gamma-ray attenuation parameters, Open Chem. 21 (2023), https://doi.org/10.1515/chem-2023-0167.