DOI QR코드

DOI QR Code

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin (Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • Abd Allh M. Abd El-Hamid (Nuclear Materials Authority) ;
  • M.I. Sayyed (Department of Physics, Faculty of Science, Isra University) ;
  • K.A. Mahmoud (Nuclear Materials Authority)
  • Received : 2023.10.27
  • Accepted : 2024.01.28
  • Published : 2024.06.25

Abstract

The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Keywords

Acknowledgement

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

References

  1. M.Y. Hanfi, M.I. Sayyed, E. Lacomme, I. Akkurt, K.A. Mahmoud, The influence of MgO on the radiation protection and mechanical properties of tellurite glasses, Nucl. Eng. Technol. 53 (2021) 2000-2010.  https://doi.org/10.1016/j.net.2020.12.012
  2. O.L. Tashlykov, A.M. Grigoryev, Y.A. Kropachev, Reducing the exposure dose by optimizing the route of personnel movement when visiting specified points and taking into account the avoidance of obstacles, Energies 15 (2022) 8222, https://doi.org/10.3390/en15218222. 
  3. A.F. Mikhailova, O.L. Tashlykov, The ways of implementation of the optimization principle in the personnel radiological protection, Phys. Atom. Nucl. 83 (2020) 1718-1726, https://doi.org/10.1134/S1063778820100154. 
  4. K.A. Mahmoud, O.L. Tashlykov, M.H.A. Mhareb, A.H. Almuqrin, Y.S.M. Alajerami, M.I. Sayyed, A new heavy-mineral doped clay brick for gamma-ray protection purposes, Appl. Radiat. Isot. 173 (2021) 109720, https://doi.org/10.1016/j.apradiso.2021.109720. 
  5. M.I. Sayyed, K.A. Mahmoud, S. Islam, O.L. Tashlykov, E. Lacomme, K.M. Kaky, Application of the MCNP 5 code to simulate the shielding features of concrete samples with different aggregates, Radiat. Phys. Chem. 174 (2020), https://doi.org/10.1016/j.radphyschem.2020.108925. 
  6. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94, https://doi.org/10.1016/j.radphyschem.2018.02.026. 
  7. H. Durak, E. Kavaz, B. Oto, A. Aras, The impact of Co addition on neutron-photon protection characteristics of red and yellow clays-based bricks: an experimental study, Prog. Nucl. Energy 143 (2022) 104047, https://doi.org/10.1016/j.pnucene.2021.104047. 
  8. H.S. Mann, G.S. Brar, G.S. Mudahar, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks, Radiat. Phys. Chem. 127 (2016) 97-101, https://doi.org/10.1016/j.radphyschem.2016.06.013. 
  9. K.A. Mahmoud, A.M.A. El-Soad, E.G. Kovaleva, N. Almousa, M.I. Sayyed, O. L. Tashlykov, Modeling a three-layer container based on halloysite nano-clay for radioactive waste disposal, Prog. Nucl. Energy 152 (2022), https://doi.org/10.1016/j.pnucene.2022.104379. 
  10. K.S. Mann, M.S. Heer, A. Rani, Investigation of clay bricks for storage facilities of radioactive-wastage, Appl. Clay Sci. 119 (2016) 249-256, https://doi.org/10.1016/j.clay.2015.10.022. 
  11. B.S. Sidhu, A.S. Dhaliwal, K.S. Kahlon, S. Singh, On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste, Nucl. Eng. Technol. 54 (2022) 674-680, https://doi.org/10.1016/j.net.2021.08.006. 
  12. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M. S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), https://doi.org/10.1016/j.radphyschem.2022.110004. 
  13. A.M. Abd El-Hamid, M.A. Zahran, F.M. Khalid, A.H. Mahmoud, Leaching of hafnium, zirconium, uranium and other nuclear economic elements from petroleum ash, RSC Adv. 4 (2014) 12506, https://doi.org/10.1039/c3ra44523b. 
  14. I.Y. Hakeem, Md Akter Hosen, B.A. Tayeh, A. Alhamami, Innovative Ultra-High Performance Concrete (UHPC) Incorporating oil ash and electric arc furnace dust, Case Stud. Constr. Mater. 18 (2023) e01843, https://doi.org/10.1016/j.cscm.2023.e01843. 
  15. M.H. Al-Malack, G.M. Abdullah, O.S.B. Al-Amoudi, A.A. Bukhari, Stabilization of indigenous Saudi Arabian soils using fuel oil flyash, Journal of King Saud University - Engineering Sciences 28 (2016) 165-173, https://doi.org/10.1016/j.jksues.2014.04.005. 
  16. T. Husain, M. Ahmad, Low cost adsorbent to reduce disinfection by-products from drinking water in small communities, in: Environmental Engineering and Computer Application, CRC Press, 2015, pp. 99-104, https://doi.org/10.1201/b18565-22. 
  17. S.M. Abd-Allah, O.M. El Hussaini, R.M. Mahdy, Towards A more safe environment: (2) characterization of some clay sediments in Egypt for safe environmental applications, Aust J Basic Appl Sci 1 (2007) 813-823. 
  18. J.M. Huggett, CLAY MINERALS, in: Encyclopedia of Geology, Elsevier, 2005, pp. 358-365, https://doi.org/10.1016/B0-12-369396-9/00273-2. 
  19. H. Abd El-Naby, W. Frisch, Geochemical constraints from the hafafit metamorphic complex (HMC): evidence of neoproterozoic back-arc basin development in the central eastern desert of Egypt, J. Afr. Earth Sci. 45 (2006) 173-186, https://doi.org/10.1016/j.jafrearsci.2006.02.006. 
  20. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, Maha M. AlShammari, Nidal Dwaikat, Y. S.M. Alajerami, Muna Alqahtani, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications, Eur. Phys. J. Plus. 136 (1) (2021) 108. 
  21. E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics, J. Phys. Chem. Solid. 164 (2022), https://doi.org/10.1016/j.jpcs.2022.110627. 
  22. X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, La-Ur-03-1987 II, 2003, Version 5. 
  23. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (2018) 900-914, https://doi.org/10.1080/10420150.2018.1505890. 
  24. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, Physical, structural, optical investigation and shielding features of tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids 503-504 (2019) 158-168, https://doi.org/10.1016/j.jnoncrysol.2018.09.038. 
  25. A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program, J. Non-Cryst. Solids 543 (2020), https://doi.org/10.1016/j.jnoncrysol.2020.120134. 
  26. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses, Appl. Phys. Mater. Sci. Process 127 (2021), https://doi.org/10.1007/s00339-021-04409-9. 
  27. H.Z. Harraz, M.M. Hamdy, Interstratified vermiculite-mica in the gneiss-metapelite-serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: from metasomatism to weathering, J. Afr. Earth Sci. 58 (2010) 305-320, https://doi.org/10.1016/j.jafrearsci.2010.03.009. 
  28. Q. Huang, J. Jiang, L. Glasses, The gamma-ray and neutron shielding factors of flyash brick materials the gamma-ray and neutron shielding factors of fly-ash brick materials, J. Radiol. Prot. 34 (2014) 89-101, https://doi.org/10.1088/0952-4746/34/1/89. 
  29. S. Singh, A. Kumar, D. Singh, K.S. Thind, G.S. Mudahar, Barium-borate-flyash glasses: as radiation shielding materials, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 140-146, https://doi.org/10.1016/j.nimb.2007.10.018. 
  30. E.O. Echeweozo, A.D. Asiegbu, E.L. Efurumibe, Investigation of kaolin - granite composite bricks for gamma radiation shielding, International Journal of Advanced Nuclear Reactor Design and Technology 3 (2021) 194-199, https://doi.org/10.1016/j.jandt.2021.09.007. 
  31. H.S. Mann, G.S. Brar, K.S. Mann, G.S. Mudahar, Experimental investigation of clay fly ash bricks for gamma-ray shielding, Nucl. Eng. Technol. 48 (2016) 1230-1236, https://doi.org/10.1016/j.net.2016.04.001. 
  32. B. Dogan, N. Altinsoy, Investigation of Photon Attenuation Coefficient of Some Building Materials Used in Turkey, 2015 020033, https://doi.org/10.1063/1.4914224. 
  33. H.S. Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Investigation on gamma-ray shielding and permeability of clay-steel slag mixture, Bull. Eng. Geol. Environ. 78 (2019) 4589-4598, https://doi.org/10.1007/s10064-018-1391-6. 
  34. H. Share Isfahani, S.M. Abtahi, M.A. Roshanzamir, A. Shirani, S.M. Hejazi, Permeability and gamma-ray shielding efficiency of clay modified by barite powder, Geotech. Geol. Eng. 37 (2019) 845-855, https://doi.org/10.1007/s10706-018-0654-0. 
  35. K.A. Mahmoud, M.W. Marashdeh, Clay-based bricks' rich illite mineral for gamma-ray shielding applications: an experimental evaluation of the effect of pressure rates on gamma-ray attenuation parameters, Open Chem. 21 (2023), https://doi.org/10.1515/chem-2023-0167.