DOI QR코드

DOI QR Code

Fracture analysis for nozzle cracks in nuclear reactor pressure vessel using FCPAS

  • Abdurrezzak Boz (Department of Mechanical Engineering, Bilecik Seyh Edebali University) ;
  • Oguzhan Demir (Department of Mechanical Engineering, Bilecik Seyh Edebali University)
  • Received : 2023.09.26
  • Accepted : 2024.01.25
  • Published : 2024.06.25

Abstract

This study addresses cracks and fracture problems in engineering structures that may cause significant challenges and safety concerns, with a focus on pressure vessels in nuclear power plants. Comprehensive parametric three-dimensional mixed mode fracture analyses for inclined and deflected nozzle corner cracks with various crack shape aspect ratios and depth ratios in nuclear reactor pressure vessels are carried out. Stress intensity factor (SIF) solutions are obtained using FRAC3D, which is part of Fracture and Crack Propagation Analysis System (FCPAS), employing enriched finite elements along the crack front. Also, improved empirical equations are developed to allow the determination of mixed mode SIFs, KI, KII, and KIII, for any values of the parameters considered in the study. This study provides practical solutions to assess the remaining life and fail-safe conditions of nuclear reactors by providing accurate SIF determination.

Keywords

Acknowledgement

The support by Dr. Ali O. Ayhan is gratefully acknowledged for providing FCPAS software.

References

  1. W.L. Server, R.K. Nanstad, Reactor pressure vessel (RPV) design and fabrication: the case of the USA, in: Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants, Woodhead Publishing Series in Energy, 2015, pp. 3-25. 
  2. P.G. Tipping, Plant life management (PLiM) practices for pressurized light water reactors (PWR), in: P.G. Tipping (Ed.), Understanding and Mitigating Ageing in Nuclear Power Plants, Woodhead Publishing Series in Energy, 2010, pp. 609-632. 
  3. R.W. Derby, Shape factors for nozzle-corner cracks, Exp. Mech. 12 (12) (1972) 580-584.  https://doi.org/10.1007/BF02320603
  4. C. Ruiz, Stress intensity factors for nozzle corner cracks, Strain 9 (1) (1973) 7-10.  https://doi.org/10.1111/j.1475-1305.1973.tb01791.x
  5. C.W. Smith, M. Jolles, W.H. Peters, Stress intensities for nozzle cracks in reactor vessels, Exp. Mech. 17 (12) (1977) 449-454.  https://doi.org/10.1007/BF02324667
  6. C.W. Smith, W.H. Peters, W.T. Hardrath, T.S. Fleischman, Stress intensity distributions in nozzle corner cracks of complex geometry, in: Trans. Of the Fifth Int. Conf. on Struct. Mech. in Reactor Tech., 1979. G4/4. 
  7. C.W. Smith, W.H. Peters, M.I. Jolles, Stress intensity factors for reactor vessel nozzle cracks, J. Pressure Vessel Technol. 100 (2) (1978) 141-149.  https://doi.org/10.1115/1.3454444
  8. K.N. Akhurst, G.G. Chell, Methods of calculating stress intensity factors for nozzle corner cracks, Int. J. Pres. Ves. Pip. 14 (4) (1983) 227-257.  https://doi.org/10.1016/0308-0161(83)90016-9
  9. C. Guozhong, H. Qichao, Approximate stress-intensity factor solutions for nozzle corner cracks, Int. J. Pres. Ves. Pip. 42 (1) (1990) 75-96.  https://doi.org/10.1016/0308-0161(90)90056-N
  10. G. Chai, Q. Hong, Stress intensity factors of nozzle corner cracks, Eng. Fract. Mech. 38 (1) (1991) 27-35.  https://doi.org/10.1016/0013-7944(91)90204-E
  11. M.A. Mohamed, J. Schroeder, Stress intensity factor solution for crotch-corner cracks of tee-intersections of cylindrical shells, Int. J. Fract. 14 (6) (1978) 605-621.  https://doi.org/10.1007/BF00115999
  12. Z. Gao, L. Xu, K. Zhang, Fatigue crack growth in the nozzle corner of a pressure vessel, Int. J. Pres. Ves. Pip. 42 (1) (1990) 1-13.  https://doi.org/10.1016/0308-0161(90)90051-I
  13. T. Jin, Z. He, P. Liu, Z. Wang, Y. Li, D. Wang, A new stress intensity factor solution based on the response surface method for nozzle corner cracks in nuclear reactor for thermal energy generation, Front. Energy Res. 9 (2021) 801919. 
  14. W. Schmitt, G. Bartholome, A. Grostad, M. Miksch, Calculation of stress-intensity factors of cracks in nozzles, Int. J. Fract. 12 (3) (1976) 381-390.  https://doi.org/10.1007/BF00032833
  15. W. Schmitt, Analysis of a crack in a nuclear pressure vessel nozzle using three-dimensional crack tip singularity elements, Int. J. Pres. Ves. Pip. 3 (2) (1975) 123-136.  https://doi.org/10.1016/0308-0161(75)90016-2
  16. M.J.G. Broekhoven, Computation of stress intensity factors for nozzle corner cracks by various finite element procedures, in: Third International Conference on Structural Mechanics in Reactor Technology, 1975. G4/6. 
  17. D. Aurich, W. Brocks, D. Noack, H. Veith, Elastic-plastic FEM-analysis of a nozzle corner crack and discussion of the results by some fracture mechanics concepts, Nucl. Eng. Des. 72 (1) (1982) 43-52.  https://doi.org/10.1016/0029-5493(82)90083-8
  18. W. Brocks, D. Noack, H. Veith, H.-H. Erbe, Elastic-plastic analysis of a nozzle corner crack by finite element method, Int. J. Pres. Ves. Pip. 10 (3) (1982) 219-234.  https://doi.org/10.1016/0308-0161(82)90034-5
  19. A. Cella, A. Macchi, C. Sampietri, Fracture mechanics characterization of a 1:5 scale PWR vessel model, Int. J. Pres. Ves. Pip. 40 (4) (1989) 259-278.  https://doi.org/10.1016/0308-0161(89)90062-8
  20. Y.R. Rashid, J.D. Gilman, Three-dimensional analysis of reactor pressure vessel nozzles, in: First International Conference on Structural Mechanics in Reactor Technology, 1971. G2/6. 
  21. T.K. Hellen, A.R. Dowling, Three-dimensional crack analysis applied to an LWR nozzle-cylinder intersection, Int. J. Pres. Ves. Pip. 3 (1) (1975) 57-74.  https://doi.org/10.1016/0308-0161(75)90005-8
  22. S.N. Atluri, B.R. Bass, J.W. Bryson, K. Kathiresan, NOZ-FLAW: A Finite Element Program for Direct Evaluation of Stress Intensity Factors for Pressure Vessel Nozzle-Corner Flaws, 1981. 
  23. H. Miyamoto, M. Kikuchi, T. Okazaki, M. Kubo, The J integral evaluation of a nozzle corner crack under thermal transient loading condition, Nucl. Eng. Des. 75 (2) (1983) 213-222.  https://doi.org/10.1016/0029-5493(83)90018-3
  24. W.W. Wilkening, 3-D elastic analysis of a circular nozzle corner crack, J. Pressure Vessel Technol. 108 (4) (1986) 474-478.  https://doi.org/10.1115/1.3264815
  25. B. Wang, D. Xu, W. Ye, Y. He, X. Liang, Computation of SIF (stress intensity factor) of corner crack in interior wall of nozzle of nuclear vessel, Int. J. Pres. Ves. Pip. 51 (3) (1992) 349-359.  https://doi.org/10.1016/0308-0161(92)90106-P
  26. D. Siegele, L. Hodulak, I. Varfolomeyev, G. Nagel, Failure assessment of RPV nozzle under loss of coolant accident, Nucl. Eng. Des. 193 (3) (1999) 265-272.  https://doi.org/10.1016/S0029-5493(99)00184-3
  27. A.T. Diamantoudis, G.N. Labeas, Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology, Eng. Fract. Mech. 72 (9) (2005) 1299-1312.  https://doi.org/10.1016/j.engfracmech.2004.10.004
  28. U.T. Murtaza, M.J. Hyder, The effects of thermal stresses on the elliptical surface cracks in PWR reactor pressure vessel, Theor. Appl. Fract. Mech. 75 (2015) 124-136.  https://doi.org/10.1016/j.tafmec.2014.12.001
  29. U.T. Murtaza, M.J. Hyder, Fracture analysis of the set-in nozzle of a PWR reactor pressure vessel-Part 1: determination of critical crack, Eng. Fract. Mech. 192 (2018) 343-361.  https://doi.org/10.1016/j.engfracmech.2016.03.049
  30. Y. Li, T. Jin, Z. Wang, D. Wang, Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks, Nucl. Eng. Technol. 52 (11) (2020) 2638-2651.  https://doi.org/10.1016/j.net.2020.04.019
  31. V.F. Gonz' alez-Albuixech, G. Qian, M. Sharabi, M. Niffenegger, B. Niceno, N. Lafferty, Coupled RELAP5, 3D CFD and FEM analysis of postulated cracks in RPVs subjected to PTS loading, Nucl. Eng. Des. 297 (2016) 111-122.  https://doi.org/10.1016/j.nucengdes.2015.11.032
  32. T. Zhang, F.W. Brust, G. Wilkowski, D.L. Rudland, A. Csontos, Welding residual stress and multiple flaw evaluation for reactor pressure vessel head replacement welds with alloy 52, ASME Pressure Vessels and Piping Conference 43697 (2009) 577-586. 
  33. B. Spencer, M. Backman, P. Chakraborty, W. Hoffman, Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly, 2015. 
  34. R. Liu, M. Huang, Y. Peng, H. Wen, J. Huang, C. Ruan, H. Ma, Q. Li, Analysis for crack growth regularities in the nozzle-cylinder intersection area of Reactor Pressure Vessel, Ann. Nucl. Energy 112 (2018) 779-793.  https://doi.org/10.1016/j.anucene.2017.10.021
  35. K. Liu, M. Huang, J. Lin, H. Jiang, B. Wang, H. Matsuda, The effects of thermal stress on the crack propagation in AP1000 reactor pressure vessel, Theor. Appl. Fract. Mech. 110 (2020) 102798. 
  36. O. Demir, A.O. Ayhan, S. Iric, A new specimen for mixed mode-I/II fracture tests: modeling , experiments and criteria development, Eng. Fract. Mech. 178 (2017) 457-476.  https://doi.org/10.1016/j.engfracmech.2017.02.019
  37. O. Demir, A.O. Ayhan, H. Lekesiz, in: Investigation of Mixed Mode - I/II Fracture Problems - Part 1: Computational and Experimental Analyses 35, 2016, pp. 330-339.  https://doi.org/10.3221/IGF-ESIS.35.38
  38. O. Demir, A.O. Ayhan, Investigation of mixed mode-I/II fracture problems - Part 2: evaluation and development of mixed mode-I/II fracture criteria 35 (2016) 340-349. 
  39. A.O. Ayhan, O. Demir, A novel test system for mixed mode-I/II/III fracture tests - Part 1 : modeling and numerical analyses, Eng. Fract. Mech. 218 (2019) 106597. April. 
  40. O. Demir, A.O. Ayhan, S. Iric, A novel test system for mixed mode-I/II/III fracture tests - Part 2 : experiments and criterion development, Eng. Fract. Mech. 220 (2019) 106671. 
  41. M.F. Yaren, O. Demir, A.O. Ayhan, S. Iric, Three-dimensional mode-I/III fatigue crack propagation: computational modeling and experiments, Int. J. Fatig. 121 (2019) 124-134.  https://doi.org/10.1016/j.ijfatigue.2018.12.005
  42. ANSYS, Theory Manual Version 12.0, Ansys Inc.", Canonsburg, PA, USA, 2009. 
  43. A.O. Ayhan, H.F. Nied, FRAC3D-Finite element based software for 3-D and generalized plane strain fracture analysis, Semiconductor Research Corporation (SRC) (1998). Technical Report. 
  44. A.O. Ayhan, H.F. Nied, Stress intensity factors for three-dimensional surface cracks using enriched finite elements, Int. J. Numer. Methods Eng. 54 (6) (2002) 899-921.  https://doi.org/10.1002/nme.459
  45. A.O. Ayhan, Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates, Eng. Fract. Mech. 71 (7-8) (2004) 1059-1079.  https://doi.org/10.1016/S0013-7944(03)00153-X
  46. AP1000 Design Control Document, U.S. Nuclear Regulatory Commission. Reactor Coolant System and Connected Systems, Revision 19 Tier 2. Westinghouse (Chapter vol. 5, Section 5.3 Reactor Vessel). 
  47. Q. Du, G.Y. Shi, Efficient analysis of 3D mixed-mode cracks of a pressure vessel based on schwartz-neuman alternating method, Appl. Mech. Mater. 853 (2017) 266-271.  https://doi.org/10.4028/www.scientific.net/AMM.853.266
  48. Minitab Inc. Minitab Software for Quality Improvement. Version vol. 18.