Acknowledgement
The support by Dr. Ali O. Ayhan is gratefully acknowledged for providing FCPAS software.
References
- W.L. Server, R.K. Nanstad, Reactor pressure vessel (RPV) design and fabrication: the case of the USA, in: Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants, Woodhead Publishing Series in Energy, 2015, pp. 3-25.
- P.G. Tipping, Plant life management (PLiM) practices for pressurized light water reactors (PWR), in: P.G. Tipping (Ed.), Understanding and Mitigating Ageing in Nuclear Power Plants, Woodhead Publishing Series in Energy, 2010, pp. 609-632.
- R.W. Derby, Shape factors for nozzle-corner cracks, Exp. Mech. 12 (12) (1972) 580-584. https://doi.org/10.1007/BF02320603
- C. Ruiz, Stress intensity factors for nozzle corner cracks, Strain 9 (1) (1973) 7-10. https://doi.org/10.1111/j.1475-1305.1973.tb01791.x
- C.W. Smith, M. Jolles, W.H. Peters, Stress intensities for nozzle cracks in reactor vessels, Exp. Mech. 17 (12) (1977) 449-454. https://doi.org/10.1007/BF02324667
- C.W. Smith, W.H. Peters, W.T. Hardrath, T.S. Fleischman, Stress intensity distributions in nozzle corner cracks of complex geometry, in: Trans. Of the Fifth Int. Conf. on Struct. Mech. in Reactor Tech., 1979. G4/4.
- C.W. Smith, W.H. Peters, M.I. Jolles, Stress intensity factors for reactor vessel nozzle cracks, J. Pressure Vessel Technol. 100 (2) (1978) 141-149. https://doi.org/10.1115/1.3454444
- K.N. Akhurst, G.G. Chell, Methods of calculating stress intensity factors for nozzle corner cracks, Int. J. Pres. Ves. Pip. 14 (4) (1983) 227-257. https://doi.org/10.1016/0308-0161(83)90016-9
- C. Guozhong, H. Qichao, Approximate stress-intensity factor solutions for nozzle corner cracks, Int. J. Pres. Ves. Pip. 42 (1) (1990) 75-96. https://doi.org/10.1016/0308-0161(90)90056-N
- G. Chai, Q. Hong, Stress intensity factors of nozzle corner cracks, Eng. Fract. Mech. 38 (1) (1991) 27-35. https://doi.org/10.1016/0013-7944(91)90204-E
- M.A. Mohamed, J. Schroeder, Stress intensity factor solution for crotch-corner cracks of tee-intersections of cylindrical shells, Int. J. Fract. 14 (6) (1978) 605-621. https://doi.org/10.1007/BF00115999
- Z. Gao, L. Xu, K. Zhang, Fatigue crack growth in the nozzle corner of a pressure vessel, Int. J. Pres. Ves. Pip. 42 (1) (1990) 1-13. https://doi.org/10.1016/0308-0161(90)90051-I
- T. Jin, Z. He, P. Liu, Z. Wang, Y. Li, D. Wang, A new stress intensity factor solution based on the response surface method for nozzle corner cracks in nuclear reactor for thermal energy generation, Front. Energy Res. 9 (2021) 801919.
- W. Schmitt, G. Bartholome, A. Grostad, M. Miksch, Calculation of stress-intensity factors of cracks in nozzles, Int. J. Fract. 12 (3) (1976) 381-390. https://doi.org/10.1007/BF00032833
- W. Schmitt, Analysis of a crack in a nuclear pressure vessel nozzle using three-dimensional crack tip singularity elements, Int. J. Pres. Ves. Pip. 3 (2) (1975) 123-136. https://doi.org/10.1016/0308-0161(75)90016-2
- M.J.G. Broekhoven, Computation of stress intensity factors for nozzle corner cracks by various finite element procedures, in: Third International Conference on Structural Mechanics in Reactor Technology, 1975. G4/6.
- D. Aurich, W. Brocks, D. Noack, H. Veith, Elastic-plastic FEM-analysis of a nozzle corner crack and discussion of the results by some fracture mechanics concepts, Nucl. Eng. Des. 72 (1) (1982) 43-52. https://doi.org/10.1016/0029-5493(82)90083-8
- W. Brocks, D. Noack, H. Veith, H.-H. Erbe, Elastic-plastic analysis of a nozzle corner crack by finite element method, Int. J. Pres. Ves. Pip. 10 (3) (1982) 219-234. https://doi.org/10.1016/0308-0161(82)90034-5
- A. Cella, A. Macchi, C. Sampietri, Fracture mechanics characterization of a 1:5 scale PWR vessel model, Int. J. Pres. Ves. Pip. 40 (4) (1989) 259-278. https://doi.org/10.1016/0308-0161(89)90062-8
- Y.R. Rashid, J.D. Gilman, Three-dimensional analysis of reactor pressure vessel nozzles, in: First International Conference on Structural Mechanics in Reactor Technology, 1971. G2/6.
- T.K. Hellen, A.R. Dowling, Three-dimensional crack analysis applied to an LWR nozzle-cylinder intersection, Int. J. Pres. Ves. Pip. 3 (1) (1975) 57-74. https://doi.org/10.1016/0308-0161(75)90005-8
- S.N. Atluri, B.R. Bass, J.W. Bryson, K. Kathiresan, NOZ-FLAW: A Finite Element Program for Direct Evaluation of Stress Intensity Factors for Pressure Vessel Nozzle-Corner Flaws, 1981.
- H. Miyamoto, M. Kikuchi, T. Okazaki, M. Kubo, The J integral evaluation of a nozzle corner crack under thermal transient loading condition, Nucl. Eng. Des. 75 (2) (1983) 213-222. https://doi.org/10.1016/0029-5493(83)90018-3
- W.W. Wilkening, 3-D elastic analysis of a circular nozzle corner crack, J. Pressure Vessel Technol. 108 (4) (1986) 474-478. https://doi.org/10.1115/1.3264815
- B. Wang, D. Xu, W. Ye, Y. He, X. Liang, Computation of SIF (stress intensity factor) of corner crack in interior wall of nozzle of nuclear vessel, Int. J. Pres. Ves. Pip. 51 (3) (1992) 349-359. https://doi.org/10.1016/0308-0161(92)90106-P
- D. Siegele, L. Hodulak, I. Varfolomeyev, G. Nagel, Failure assessment of RPV nozzle under loss of coolant accident, Nucl. Eng. Des. 193 (3) (1999) 265-272. https://doi.org/10.1016/S0029-5493(99)00184-3
- A.T. Diamantoudis, G.N. Labeas, Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology, Eng. Fract. Mech. 72 (9) (2005) 1299-1312. https://doi.org/10.1016/j.engfracmech.2004.10.004
- U.T. Murtaza, M.J. Hyder, The effects of thermal stresses on the elliptical surface cracks in PWR reactor pressure vessel, Theor. Appl. Fract. Mech. 75 (2015) 124-136. https://doi.org/10.1016/j.tafmec.2014.12.001
- U.T. Murtaza, M.J. Hyder, Fracture analysis of the set-in nozzle of a PWR reactor pressure vessel-Part 1: determination of critical crack, Eng. Fract. Mech. 192 (2018) 343-361. https://doi.org/10.1016/j.engfracmech.2016.03.049
- Y. Li, T. Jin, Z. Wang, D. Wang, Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks, Nucl. Eng. Technol. 52 (11) (2020) 2638-2651. https://doi.org/10.1016/j.net.2020.04.019
- V.F. Gonz' alez-Albuixech, G. Qian, M. Sharabi, M. Niffenegger, B. Niceno, N. Lafferty, Coupled RELAP5, 3D CFD and FEM analysis of postulated cracks in RPVs subjected to PTS loading, Nucl. Eng. Des. 297 (2016) 111-122. https://doi.org/10.1016/j.nucengdes.2015.11.032
- T. Zhang, F.W. Brust, G. Wilkowski, D.L. Rudland, A. Csontos, Welding residual stress and multiple flaw evaluation for reactor pressure vessel head replacement welds with alloy 52, ASME Pressure Vessels and Piping Conference 43697 (2009) 577-586.
- B. Spencer, M. Backman, P. Chakraborty, W. Hoffman, Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly, 2015.
- R. Liu, M. Huang, Y. Peng, H. Wen, J. Huang, C. Ruan, H. Ma, Q. Li, Analysis for crack growth regularities in the nozzle-cylinder intersection area of Reactor Pressure Vessel, Ann. Nucl. Energy 112 (2018) 779-793. https://doi.org/10.1016/j.anucene.2017.10.021
- K. Liu, M. Huang, J. Lin, H. Jiang, B. Wang, H. Matsuda, The effects of thermal stress on the crack propagation in AP1000 reactor pressure vessel, Theor. Appl. Fract. Mech. 110 (2020) 102798.
- O. Demir, A.O. Ayhan, S. Iric, A new specimen for mixed mode-I/II fracture tests: modeling , experiments and criteria development, Eng. Fract. Mech. 178 (2017) 457-476. https://doi.org/10.1016/j.engfracmech.2017.02.019
- O. Demir, A.O. Ayhan, H. Lekesiz, in: Investigation of Mixed Mode - I/II Fracture Problems - Part 1: Computational and Experimental Analyses 35, 2016, pp. 330-339. https://doi.org/10.3221/IGF-ESIS.35.38
- O. Demir, A.O. Ayhan, Investigation of mixed mode-I/II fracture problems - Part 2: evaluation and development of mixed mode-I/II fracture criteria 35 (2016) 340-349.
- A.O. Ayhan, O. Demir, A novel test system for mixed mode-I/II/III fracture tests - Part 1 : modeling and numerical analyses, Eng. Fract. Mech. 218 (2019) 106597. April.
- O. Demir, A.O. Ayhan, S. Iric, A novel test system for mixed mode-I/II/III fracture tests - Part 2 : experiments and criterion development, Eng. Fract. Mech. 220 (2019) 106671.
- M.F. Yaren, O. Demir, A.O. Ayhan, S. Iric, Three-dimensional mode-I/III fatigue crack propagation: computational modeling and experiments, Int. J. Fatig. 121 (2019) 124-134. https://doi.org/10.1016/j.ijfatigue.2018.12.005
- ANSYS, Theory Manual Version 12.0, Ansys Inc.", Canonsburg, PA, USA, 2009.
- A.O. Ayhan, H.F. Nied, FRAC3D-Finite element based software for 3-D and generalized plane strain fracture analysis, Semiconductor Research Corporation (SRC) (1998). Technical Report.
- A.O. Ayhan, H.F. Nied, Stress intensity factors for three-dimensional surface cracks using enriched finite elements, Int. J. Numer. Methods Eng. 54 (6) (2002) 899-921. https://doi.org/10.1002/nme.459
- A.O. Ayhan, Mixed mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates, Eng. Fract. Mech. 71 (7-8) (2004) 1059-1079. https://doi.org/10.1016/S0013-7944(03)00153-X
- AP1000 Design Control Document, U.S. Nuclear Regulatory Commission. Reactor Coolant System and Connected Systems, Revision 19 Tier 2. Westinghouse (Chapter vol. 5, Section 5.3 Reactor Vessel).
- Q. Du, G.Y. Shi, Efficient analysis of 3D mixed-mode cracks of a pressure vessel based on schwartz-neuman alternating method, Appl. Mech. Mater. 853 (2017) 266-271. https://doi.org/10.4028/www.scientific.net/AMM.853.266
- Minitab Inc. Minitab Software for Quality Improvement. Version vol. 18.