DOI QR코드

DOI QR Code

Numerical analysis of reflood heat transfer and large-break LOCA including CRUD layer thermal effects

  • Youngjae Park (Kyung Hee University) ;
  • Donggyun Seo (Kyung Hee University) ;
  • Byoung Jae Kim (Chungnam National University) ;
  • Seung Wook Lee (Korea Atomic Energy Research Institute) ;
  • Hyungdae Kim (Kyung Hee University)
  • 투고 : 2023.09.05
  • 심사 : 2024.01.13
  • 발행 : 2024.06.25

초록

This study examined the effects of CRUD on reflood heat transfer behaviors of nuclear fuel rods during a loss-of-coolant-accident (LOCA) in a pressurized water reactor using a best-estimate thermal-hydraulic analysis code. Changes in thermal properties and boiling heat transfer characteristics of the CRUD layer were extensively reviewed, and a set of correction factors to reflect the changes was implemented into the code. A heat structure layer reflecting the effects of CRUDs on the properties was added to the outer surface of the fuel cladding. Numerical simulations were conducted to examine the effects of CRUDs on reflood cooling of overheated fuel rods for representative separate and integral effect tests, FLECHT-SEASET and LOFT. In LOFT analysis, the average cladding temperature was increased due to the low thermal conductivity of CRUD during steady-state operation; however, in both analyses, the peak cladding temperature decreased, and the quenching time was reduced. Obtained results revealed that when the porous CRUD layer is deposited on the fuel cladding, two opposite effects appear. Low thermal conductivity of the CRUD layer always increases fuel temperature during normal operation; however, its hydrophilic porous structures may contribute to accelerated reflood cooling of fuel rods during a LOCA.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (2106022). This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry and Energy of Korea (No. RS-2023-00244330).

참고문헌

  1. Yamato Asakura, Makoto Kikuchi, Shunsuke Uchida, Hideo Yusa, Deposition of iron oxide on heated surfaces in boiling water, Nucl. Sci. Eng. 67 (1) (1978) 1-7.
  2. Revision 1, vols. 1 and 2, "Fuel Reliability Guidelines: PWR Fuel Cladding Corrosion and Crud", EPRI, Palo Alto, CA, 2014 1022896.
  3. Robert Salko, Travis Lange, Emre Tatli, Benjamin Collins, David Pointer, William Gurecky, Stuart Slattery, Analisa Manera, Development of a crud induced localized corrosion analysis capability in VERA, Proc. Am. Nuclear Soc. 3090 (November 2020) p168-p171.
  4. Benjamin Collins, William Gurecky, Robert Salko, David Andersson, Crud-induced power shift simulations using VERA, ANS Proc. from the Consortium for Advanced Simulation of Light Water Reactors Virtual Meeting 3090 (November 2020) p172-p176.
  5. U.S. Code, Of federal regulations, Title 10 (1997). Part 50.46.
  6. Rui Hu, S. Mujid, Kazimi, "Considering the thermal resistance of CRUD in LOCA analysis", Trans. Am. Nucl. Soc. 101 (January 2009) 590-592.
  7. Joosuk Lee, Hyedong Jeong, Youngseok Bang, "Thermal Resistance Effects of CRUD and Oxide Layers to the Safety Analysis", Topfuel, Prague Czech2018..
  8. "PWR Axial Offset Anomaly (AOA) Guidelines", Revision 1. Technical Report, EPRI, Palo Alto, CA, 2003 1003213.
  9. Jun-young Kang, Gi Cheol Lee, Massoud Kaviany, Hyun Sun Park, Kiyofumi Moriyama, Moo Hwan Kim, Minimum film-boiling quench temperature increase by CuO porous-microstructure coating, Appl. Phys. Lett. 110 (4) (2017). Applied Physics Letters, 2017, Vol.110 (4). Web.
  10. M.P. Short, The particulate nature of the CRUD source term in light water reactors, J. Nucl. Mater. 509 (2018) 478-481.
  11. Jacopo Buongiorno, Can corrosion and CRUD actually improve safety margins in LWRs? Ann. Nucl. Energy 63 (2014) 9-21.
  12. Jeff Deshon, Dennis Hussey, Brian Kendrick, John McGurk, Jeff Secker, Michael Short, Pressurized water reactor fuel crud and corrosion modeling, J. Miner. Met. Mater. Soc. 63 (8) (2011) 64-72.
  13. J. Deshon, PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, EPRI Project, June 2004 1008102. Final Report.
  14. Jim Henshaw, John C. McGurk, Howard E. Sims, Ann Tuson, Shirley Dickinson, Jeff Deshon, "A model of chemistry and thermal hydraulics in PWR fuel CRUD deposits", J. Nucl. Mater. 353 (2006) 1-11.
  15. M.P. Short, D. Hussey, B.K. Kendrick, T.M. Besmann, C.R. Stanek, S. Yip, Multiphysics modeling of porous CRUD deposits in nuclear reactors, J. Nucl. Mater. 443 (2013) 579-587.
  16. B. Shi, B.G. Jones, C. Pan, "Parametric Study of Boiling Heat Transfer in Porous Media", International Conference on Nuclear Engineering, vol. 4, ICONE, New Orleans, United States, 1996.
  17. J. Deshon, "Evaluation of Fuel Cladding Corrosion and Corrosion Product Deposits from Callaway Cycle 14: Results of Poolside Measurements Following Two Cycles of Zinc Addition", EPRI, Palo Alto, CA, 2006 1013425.
  18. J. Deshon, "Simulated Fuel Crud Thermal Conductivity Measurements under Pressurized Water Reactor Conditions", EPRI, Palo Alto, CA, 2011 1022896.
  19. B. Cheng, Poolside Fuel Inspection and Fuel Deposit Evaluation at Columbia Generating Station, EPRI, Palo Alto, CA, 2006 1013431 (Cycles 16 and 17)".
  20. J. Deshon, "Halden In-Reactor Test to Exhibit PWR Axial Offset Anomaly", EPRI, Palo Alto, CA, 2004 1008106.
  21. C. Pan, B.G. Jones, A.J. Machiels, "Wick Boiling Performance in Porous Deposits with Chimneys", vol. 47, American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 1985, pp. 15-24.
  22. Gayatri Paul, Prasanta Kumar Das, Indranil Manna, Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid, Int. J. Heat Mass Tran. 94 (2016) 390. -402.
  23. Jia-Qi Li, Lin-Wei Mou, Yu-Hong Zhang, Zhong-Shu Yang, Mu-Han Hou, Li-Wu Fan, Yu Zi-Tao, An experimental study of the accelerated quenching rate and enhanced pool boiling heat transfer on rodlets with a superhydrophilic surface in subcooled water, Exp. Therm. Fluid Sci. 92 (2018) 103-112.
  24. Abdurrahim Bolukbasi, Dogan Ciloglu, Pool boiling heat transfer characteristics of vertical cylinder quenched by SiO2ewater nanofluids, Int. J. Therm. Sci. 50 (2011) 1013-1021.
  25. Se-Young Chun, In Cheol Bang, Yeon-Jun Choo, Chul-Hwa Song, "Heat transfer characteristics of Si and SiC nanofluids during a rapid quenching and nanoparticles deposition effects", Int. J. Heat Mass Tran. 54 (2011) 1217-1223.
  26. Gayatri Paul, Prasanta Kumar Das, Indranil Manna, Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid, Int. J. Heat Mass Tran. 94 (2016) 390-402.
  27. Li-Wu Fan, Jia-Qi Li, Yue-Zi Wu, Liang Zhang, Yu Zi-Tao, Pool boiling heat transfer during quenching in carbon nanotube (CNT)-based aqueous nanofluids: effects of length and diameter of the CNTs, Appl. Therm. Eng. 122 (2017) 555-565.
  28. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, Study of pool boiling and critical heat flux enhancement in nanofluids, Bull. Pol. Acad. Sci. Tech. Sci. 55 (No. 2) (2007).
  29. Gerardi Craig, Jacopo Buongiorno, Lin-wen Hu, Thomas McKrell, Infrared thermometry study of nanofluid pool boiling phenomena, Nanoscale Res. Lett. 6 (2011) 232.
  30. Carolyn Coyle, Bren Phillips, Sean Lowder, Jacopo Buongiorno, Thomas McKrell, "Synthesis of CRUD and its Effects on Pool and Subcooled Flow Boiling", CASL-U-2015-0319-000, 2015.
  31. Carolyn Coyle, Jacopo Buongiorno, Thomas McKrell, "Synthesis of CRUD and its Effects on Pool and Subcooled Flow Boiling", CASL-U-2015-0068-000, 2015.
  32. Carolyn Patricia Coyle, "Synthesis of CRUD and its Effects on Pool and Subcooled Flow Boiling", Ph.D. dissertation, MIT, 2016.
  33. Hyung Dae Kim, Jeongbae Kim, Moo Hwan Kim, Experimental studies on CHF characteristics of nano-fluids at pool boiling, Int. J. Multiphas. Flow 33 (2007) 691-706.
  34. Sang M. Kwark, Ratan Kumar, Gilberto Moreno, Seung M. You, Transient characteristics of pool boiling heat transfer in nanofluids, in: Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference (MNHMT2009), December 18-21, 2009. Shanghai, China.
  35. Ramakrishna N. Hegde, Shrikantha S. Rao, R.P. Reddy, Flow visualization, critical heat flux enhancement, and transient characteristics in pool boiling using nanofluids, J. ASTM Int. (JAI) 9 (No. 5) (2012).
  36. Ho Seon Ahn, Hyungdae Kim, HangJin Jo, SoonHo Kang, WonPyo Chang, Moo Hwan Kim, Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface, Int. J. Multiphas. Flow 36 (2010) 375-384.
  37. Lee Seung Won, Seong Dae Park, Sarah Kang, Seong Man Kim, Seo Han, Dong Won Lee, In Cheol Bang, Critical heat flux enhancement in flow boiling of Al2O3 and SiC nanofluids under low pressure and low flow conditions, Nucl. Eng. Technol. 44 (No.4) (May 2012).
  38. Seung Won Lee, Kyung Mo Kim, In Cheol Bang, "Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid", Int. J. Heat Mass Tran. 65 (2013) 348-356.
  39. Taeseung Lee, Jong Hyuk Lee, Yong Hoon Jeong, Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions, Int. J. Heat Mass Tran. 56 (2013) 101-106.
  40. Tae Il Kim, Yong Hoon Jeong, Soon Heung Chang, An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid, Int. J. Heat Mass Tran. 53 (2010) 1015-1022.
  41. Tae Il Kim, Won Joon Chang, Soon Heung Chang, Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube, Int. J. Heat Mass Tran. 54 (2011) 2021-2025.
  42. Mohammad Sohail Sarwar, Yong Hoon Jeong, Soon Heung Chang, Subcooled flow boiling CHF enhancement with porous surface coatings, Int. J. Heat Mass Tran. 50 (2007) 3649-3657.
  43. H. Kim, J. Buongiorno, L.W. Hu, T. McKrell, G. DeWitt, Experimental study on quenching of a small metal sphere in nanofluids, in: Proceedings of 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, October 31-November 6, 2008. Boston, Massachusetts, USA.
  44. Hyungdae Kim, Gregory DeWitt, Thomas McKrell, Jacopo Buongiorno, Linwen Hu, On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles, Int. J. Multiphas. Flow 35 (2009) 427-438.
  45. Qi Li Jia, Lin-Wei Mou, Jia Yi Zhang, Yu Hong Zhang, Li Wu Fan, Enhanced pool boiling heat transfer during quenching of water on superhydrophilic porous surfaces: effects of the surface wickability, Int. J. Heat Mass Tran. 125 (2018) 494-505.
  46. Hyungdae Kim, Jacopo Buongiorno, Lin-Wen Hu, Thomas McKrell, Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids, Int. J. Heat Mass Tran. 53 (2010) 1542-1553.
  47. Hwasung Yeom, Hangjin Jo, Greg Johnson, Kumar Sridharan, Michael Corradini, Transient pool boiling heat transfer of oxidized and roughened Zircaloy-4 surfaces during water quenching, Int. J. Heat Mass Tran. 120 (2018) 435-446.
  48. Li-Wu Fan, Jia-Qi Li, Dan-Yang Li, Liang Zhang, Yu Zi-Tao, Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic, Int. J. Heat Mass Tran. 76 (2014) 81-89.
  49. Jun-young Kang, Seol Ha Kim, HangJin Jo, Gunyeop Park, Ho Seon Ahn, Kiyofumi Moriyama, Moo Hwan Kim, Hyun Sun Park, Film boiling heat transfer on a completely wettable surface with atmospheric saturated distilled water quenching, Int. J. Heat Mass Tran. 93 (2016) 67-74.
  50. John D. Bernadin, Issam Mudawar, An experimental investigation into the relationship between temperature-time history and surface roughness in the spray quenching of aluminum parts, J. Eng. Mater. Technol. 118 (1996) 127-134.
  51. C. Kruse, T. Anderson, C. Wilson, D. Alexander, G. Gogos, S. Ndao, Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces, Langmuir 29 (2013) 9798-9806.
  52. A. Hassebrook, C. Kruse, C. Wilson, T. Anderson, C. Zuhlke, D. Alexander, G. Gogos, S. Ndao, Effects of droplet diameter and fluid properties on the Leidenfrost temperature of polished and micro/nanostructred surfaces, J. Heat Tran. 138 (2016) 051501.
  53. G.C. Lee, J.Y. Kang, H.S. Park, K. Moriyama, S.H. Kim, M.H. Kim, Induced liquid-solid contact via micro/nano multiscale texture on a surface and its effect on the Leidenfrost temeperature, Exp. Therm. Fluid Sci. 84 (2017) 156-164.
  54. J. Yoo, S.W. Lee, Y.J. Park, H. Kim, B.J. Kim, "Implementation of the Crud Layer Model into the SPACE Code", Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, 2020. July 9-10.
  55. KHNP, KEPCO E&C, KAERI, "SPACE 2.14 Manual", 2013. S06NX08-K-1-TR-36.
  56. D.C. Groeneveld, J.Q. Shan, A.Z. Vasi'c, L.K.H. Leung, A. Durmayaz, J. Yang, S. C. Cheng, A. Tanase, The 2006 CHF look-up table, Nucl. Eng. Des. 237 (2007) 1909-1922.
  57. Juan J. Carbajo, "A study of the rewetting temperature", Nucl. Eng. Des. 84 (198), pp 21-52..
  58. D.C. Groeneveld, L.K.H. Leung, A.Z. Vasi'c, Y.J. Guo, S.C. Cheng, A look-up table for fully developed film-boiling heat transfer, Nucl. Eng. Des. 225 (2003) 83-97.
  59. M.J. Loftus, A. Tong, L.E. Hochreiter, E.R. Rosal, C.E. Conway, M.M. Valkovic, C. E. Dodge, S. Wang, in: PWR FLECHT-SEASET unblocked bundle, forced and gravity reflood task data report, vol. 1, NRC, 1980. NUREG/CR-1532.
  60. S.M. Modro, et al., "Review of LOFT [Loss-Of-Fluid Test] Large Break Experiments", NRC, NUREG/IA-0028, 1989.
  61. Paul N. Demmie, Tien-Hu Chen, Stephen R. Behling, "Best Estimate Prediction for LOFT Nuclear Experiment L2-5", vol. 5869, EGG-LOFT, NRC, 1982.
  62. John D. Burtt, International standard problem 13 (LOFT experiment L2-5) final comparison report, NRC, 1984. EGG-2369, NUREG/CR-4115.
  63. Kim, In Goo Kim, Bong Hyun, Young Seok Bang, Deog Yeon Oh, Shin An Dong, Kwang Won Seul, "Improvement of the ECCS Best Estimate Methodology and Assessment of LOFT L2-5 Experiment". Korea, Republic of: N. p., 2005. Web.
  64. J. Bae, S. Hong, T. Ro, Effect of chromium coated zircaloy cladding of accident tolerant fuel on the best estimate LOCA methodology, Prog. Nucl. Energy 151 (2022) 104330.
  65. D.Y. Lee, T.S. Ro, B.D. Chung, S.J. Hong, Implementation of chrome oxidation model into best-estimate system code for accident tolerant fuel, Ann. Nucl. Energy 192 (2023), 110002.