DOI QR코드

DOI QR Code

Preliminary importance analyses on model for pH in the presence of organic impurities in the aqueous phase for a severe accident of a nuclear power plant

  • Yoonhee Lee (Department of Quantum System Engineering, Jeonbuk National University) ;
  • Yong Jin Cho (Korea Institute of Nuclear Safety)
  • 투고 : 2023.07.19
  • 심사 : 2024.01.13
  • 발행 : 2024.06.25

초록

In this paper, a model is developed for calculating pH in the presence of organic impurities due to dissolution of paint and/or continuous injection of organic impurities in the sump. The model is implemented in the AnCheBi code for the analysis of chemical behaviors of the iodine in the containment when the pH changes during a severe accident. Validation of the model is performed with P10T2 and P11T1 experiments carried out by AECL in Canada under the BIP project. Importance analyses of the pH calculation model in the AnCheBi code are then performed with the aforementioned experimental data via Latin hypercube sampling on the reaction coefficients, sensitivity analyses of AnCheBi, and calculation of the correlation coefficients between the reaction coefficients and figure of merits (the pH and the concentrations of the various iodine species). From the importance analyses, we provide the sensitivity of the pH calculation model to the change of pH and the concentrations of the various iodine species and the reaction coefficients related with the dominant phenomena underlying the change of pH and the concentrations of the species.

키워드

과제정보

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106007). The authors would like to thank the researchers for providing the experimental results on P10T2 and P11T1 as part of the international cooperative research project BIP. The authors also would like to thank the reviewers for giving very detailed and useful reviews to strengthen the paper.

참고문헌

  1. ICRP, Compendium of dose coefficients based on ICRP publication 60. ICRP publication 119, Ann. ICRP 41 (Suppl) (2012).
  2. Y. Lee, et al., Numerical studies on the important fission products for estimating source term during a severe accident, Nucl. Eng. Technol. 54 (2022) 2690-2708.
  3. Nuclear Safety Act in Korea. https://elaw.klri.re.kr/kor_mobile/viewer.do?hseq=45486&type=sogan&key=61, 2017. (Accessed 7 July 2020).
  4. B. Cl'ement, L. Cantrel, G. Ducros, F. Funke, L. Herranz, A. Rydl, G. Weber, C. Wren, State of the Art Report on Iodine Chemistry, NEA/CSNI/R(2007)1, Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA), Boulogne-Billancourt, France, 2007.
  5. R.A. Barton, H.E. Sims, A comparison of the prediction of the INSPECT reaction set with experimental data, in: Proceedings of the 3rd CSNI Workshop on Iodine Chemistry in Reactor Safety, Tokai-Mura, Japan, September 11-13, 1991, 1991.
  6. J.C. Wren, J.M. Ball, LIRIC 3.2 an updated model for iodine behavior in the presence of organic impurities, Radiat. Phys. Chem. 60 (2001) 577-596.
  7. K. Moriyama, Y. Maruyama, H. Nakamura, KICHE : A Simulation Tool for Kinetics of Iodine Chemistry in the Containment of Light Water Reactors under Severe Accident Conditions, JAEA-Data/Code 2010-034, JAEA, Tokai-mura, Japan, 2010.
  8. L. Bosland, L. Cantrel, N. Girault, B. Clement, Modeling of iodine radiochemistry in the ASTEC severe accident code : description and application to FPT-2 Phebus test, Nucl. Technol. 171 (2010) 88-107.
  9. J.C. Wren, G.A. Glowa, J.M. Ball, A simplified model for containment iodine chemistry and transport : model description and validation using stainless steel RTF test results, in: OECD Workshop on Iodine Aspects of Severe Accident Management, Vantaa (Helsinki), Finland, May 18-20, 1999, 1999.
  10. J.C. Wren, J.M. Ball, G.A. Glowa, The chemistry of iodine in containment, Nucl. Technol. 129 (2000) 297-325.
  11. J.C. Wren, G.A. Glowa, J.M. Ball, IMOD, a containment iodine behaviour model : model description and simulation of RTF tests, in: Proceedings of Korean Nuclear Society Autumn Meeting, Taejeon, October, 2000, 2000.
  12. S. Guntay, R. Cripps, IMPAIR-3 : A Computer Program to Analyze the Iodine Behaviour in Multi-Compartments of LWR Containment, Paul Scherrer Institute, Wurenlingen, Swizterland, 1992.
  13. Y. Lee, Y.J. Cho, Analyses on importance of iodine chemistry models in AnCheBi code for a severe accident of nuclear power plant, Ann. Nucl. Energy 171 (2022) 109021.
  14. Y. Lee, et al., Analysis on Chemical Behavior of Iodine Species in the Containment during a Severe Accident (AnCheBi) Version V0.00 - Theory and User Manual, KINS/RR-2057, Daejeon, Korea, 2020.
  15. L. Bosland, K. Funke, N. Girault, G. Langrock, PARIS project : radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident. Part 1. Formation and destruction of air radiolysis products - experimental results and modeling, Nucl. Eng. Des. 238 (2008) 3542-3550.
  16. L. Bosland, K. Funke, N. Girault, G. Langrock, PARIS project : radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident. Part 2. Formation and destruction of iodine oxides compounds under irradiation - experimental results and modeling, Nucl. Eng. Des. 238 (2008) 4026-4044.
  17. F. Funke, Data analysis and modelling of organic iodide production at painted surface NEA/CSNI/R(99)7, in: OECD Workshop on Iodine Aspects of Severe Accident Management, Vantaa (Helsinki), Finland, May 18-20, 1999, 1999.
  18. G.A. Glowa, C.J. Moore, OECD/NEA Behaviour of Iodine Project - Final Summary Report, NEA/CSNI/R(2011)11, Organisation for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA), Boulogne-Billancourt, France, 2012.
  19. Clement and Simondi-Teisseire, 2010.
  20. Colombani et al., 2010.
  21. G.A. Glowa, J.M. Ball, Radioiodine Test Facility P10T2 Test Report, 153-126530-440-004, Atomic Energy Canada Limited (AECL), Ontario, Canada, 2009.
  22. J. Ball, G. Glowa, J. Wren, F. Ewig, S. Dickinson, Y. Billarand, L. Cantrel, A. Rydl, J. Royen, International Standard Problem (ISP) No 41, Follow-Up Exercise - Containment Iodine Computer Code Exercise (Parametric Studies), 2001. OECD/CSNI report NEA/CSNI/R 17 (2001).
  23. B.R. Segal, et al., Nuclear Safety in Light Water Reactor - Severe Accident Phenomenology, Elsevier, Oxford, UK, 2012.
  24. Fukushima Daiichi Nuclear Power Station Accident Information Collection and Evaluation (FACE) Project. https://www.oecd-nea.org/jcms/pl_70741/fukushimadaiichi-nuclear-power-station-accident-information-collection-and-evaluation-face-project, 2022. (Accessed 20 June 2023).
  25. G.A. Glowa, J.M. Ball, Radioiodine Test Facility P11T1 Test Report, 153-126530-440-002, Atomic Energy Canada Limited (AECL), Ontario, Canada, 2009.
  26. J.C. Wren, G.A. Glowa, A simplified model for the degradation of 2-butanone in aerated aqueous solutions under steady-state g-radiolysis conditions, Radiat. Phys. Chem. 58 (2000) 341.
  27. Glowa et al., 2000a.
  28. G.A. Glowa, C.J. Moore, I.J. Muir, The Radioiodine Test Facility, 153-126530-440-003 Revision 1, Atomic Energy Canada Limited (AECL), Ontario, Canada, 2009.
  29. L. Bosland, J. Colombani, Study of iodine releases from epoxy and polyurethane paints under irradiation and development of a new model of iodine-Epoxy paint interactions for PHEBUS and PWR severe accident applications, J. Radioanal. Nucl. Chem. 314 (2017) 1121-1140.
  30. R.L. Iman, M.J. Shortencarier, A FORTRAN 77 Program and User's Guide for the Generation of Latin Hypercube and Random Samples for Use with Computer Models, NUREC/CR-3624, SAND83-2365, Sandia National Laboratories, Albuquerque, NM, 1984.
  31. J. Cohen, P. Cohen, S.G. West, L.S. Aiken, in: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, third ed., Lawrence Erlbaum Associate Inc., Mahwah, NJ, 2003.
  32. G.A. Glowa, J.M. Ball, C.J. Moore, I.J. Muir, Radioiodine Test Facility P10T3 Test Report, 153-126530-440-005 Revision 0, Atomic Energy Canada Limited (AECL), Ontario, Canada, 2011.
  33. G.A. Glowa, C.J. Moore, I.J. Muir, Radioiodine Test Facility P9T1 Test Report, 153-126530-440-008 Revision 0, Atomic Energy Canada Limited (AECL), Ontario, Canada, 2010.
  34. G.A. Glowa, C.J. Moore, I.J. Muir, Radioiodine Test Facility P9T2 Test Report, 153-126530-440-012 Revision 0, Atomic Energy Canada Limited (AECL), Ontario, Canada, 2010.
  35. Clement et al., 2003.
  36. J. Colombani, C. Gomez, L. Martinet, C. Pascal, S2-6-11 EPICUR Test Report, SERCI-2010-013-DR, Institut de Radioprotetion et de Surete Nucleaire (IRSN), Fontenay-aux-Roses, France, 2010.
  37. J. Colombani, C. Gomez, L. Martinet, C. Pascal, S2-6-14 EPICUR Test Report, SERCI-2010-385-DR, Institut de Radioprotetion et de Surete Nucleaire (IRSN), Fontenay-aux-Roses, France, 2010.
  38. Experiments on Source Term for Delayed Releases (ESTER) Project. http://www.oecd-nea.org/jcms/pl_58926/experiments-on-source-term-for-delayed-releases-ester-project, 2020. (Accessed 20 June 2023).