DOI QR코드

DOI QR Code

Development and validation of isotope prediction module for VVER spent nuclear fuel analysis

  • Jaerim Jang (Advanced Reactor Technology Development Division, Korea Atomic Energy Research Institute) ;
  • Deokjung Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2023.09.13
  • 심사 : 2023.12.12
  • 발행 : 2024.05.25

초록

A spent nuclear fuel (SNF) analysis module for the Vodo-Vodyanoi Energetichesky Reactor (VVER) was developed and validated in this study. This advancement expands the application area of the existing nodal diffusion code, RAST-V, and reduces the need for additional code during 3D core simulations for SNF analysis, leading to increased efficiency in simulation time. RAST-V uses Lagrange interpolation and a power correction factor derived from the Bateman equation to bypass the re-depletion calculations, which are used to solve the microdepletion chain. This approach improved the efficiency of analysis. To mirror the conditions during the 3D core simulations, the module used history indices related to the moderator temperature, fuel temperature, and boron concentration. The module can predict 1620 isotopes. This paper presents the validation of this isotope inventory prediction and the application of burnup credit. The VVER analysis module was validated using 28 samples discharged from the Novovoronezh-4. Most isotopes were within 10 % of the boundaries of the measurements. This study successfully offers verification results using VVER benchmarks and discusses the application of burnup credit using a VVER-440 cask.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. NRF-2019M2D2A1A03058371).

참고문헌

  1. J. Jang, B. Ebiwonjumi, W. Kim, J. Park, J. Choe, D. Lee, Validation of spent nuclear fuel decay heat calculation by a two-step method, Nucl. Eng. Technol. 53 (2021) 44-60, https://doi.org/10.1016/j.net.2020.06.028.
  2. J. Jang, B. Ebiwonjumi, W. Kim, A. Cherezov, J. Park, D. Lee, Verification and validation of isotope inventory prediction for back-end cycle management using two-step method, Nucl. Eng. Technol. 53 (2021) 2104-2125, https://doi.org/10.1016/j.net.2021.01.009.
  3. J. Park, J. Jang, H. Kim, J. Choe, D. Yun, P. Zhang, A. Cherezov, D. Lee, RAST-K v2-three-dimensional nodal diffusion code for pressurized water reactor core analysis, Energies 13 (2020) 6324, https://doi.org/10.3390/en13236324.
  4. Current Status of World Nuclear Fuel Cycle Technology (III): Russia and Soviet Union, KAERI/AR-826/2008, KAERI, 2008. https://inis.iaea.org/collection/NCLCollectionStore/_Public/41/067/41067574.pdf.
  5. The VVER today, ROSATOM. https://rosatom.ru/upload/iblock/0be/0be1220af25741375138ecd1afb18743.pdf. Accessed May 31.
  6. L.J. Jardine, Radiochemical Assays of Irradiated VVER-440 Fuel for Use in Spent Fuel Burnup Credit Activities, UCRL-TR-212202, Lawrence Livermore National Laboratory, 2005.
  7. Y. Bilodid, E. Fridman, T. Lotsch, X2 VVER-1000 benchmark revision: fresh HZP core state and the reference Monte Carlo solution, Ann. Nucl. Energy 144 (2020), https://doi.org/10.1016/j.anucene.2020.107558.
  8. J. Jang, S. Dzianisau, D. Lee, Development of nodal diffusion code RAST-V for Vodo-Vodyanoi Energetichesky reactor analysis, Nucl. Eng. Technol. 54 (2022) 3494-3515, https://doi.org/10.1016/j.net.2022.04.007.
  9. Online, Power reactor information system. https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=448, International Arts and Entertainment Alliance.
  10. Online, Novovoronezh Unit 4 Completes Upgrade, World nuclear news, 2018. https://world-nuclear-news.org/Articles/Novovoronezh-unit-4-completes-upgrade.
  11. L. Markova, Continuation of the VVER Burnup Credit Benchmark: Evaluation of CB1 Results, Overview of CB2 Results to Date and Specification of CB3, 8th Symposium AER, Bystrice n. Pernstejnem, 1998. https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/068/32068921.pdf.
  12. L. Markova, Specification for CB 6 Benchmark on VVER-440 Final Disposal, 2010. https://www.oecd-nea.org/science/wpncs/buc/specifications/CB6-VVER-Disposal-benchmark.pdf.
  13. B. Ebiwonjumi, S. Choi, M. Lemaire, D. Lee, H.C. Shin, Validation of lattice physics code Stream for predicting pressurized water reactor spent nuclear fuel isotopic inventory, Ann. Nucl. Energy 120 (2018) 431-449, https://doi.org/10.1016/j.anucene.2018.06.002.
  14. G.I. Radulescu, C.G. Gauld, J. Llas, C. Wagner, NUREG/CR-7108 an Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions, Oak Ridge National Laboratory, April 2012.
  15. M. J, D. Scaglione, E.J. Mueller, C.W. Wagner, J. Marshall, NUREG/CR-7109, an Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Criticality (Keff) Predictions, Oak Ridge National Laboratory, April 2012.
  16. User's Guide HDF5 Release 1.10, The HDF Group, 2019. https://portal.hdfgroup.org/display/HDF5/HDF5+User+Guides?preview=/53610087/53610088/Users_Guide.pdf.
  17. B. Vrban, J. Luley, S. Cerba, F. Osusky, V. Necas, The VVER-440 Burnup Credit Computational Benchmark Used for the SCALE System Qualification, Applied Physics of Condensed Matter, APCOM 2018, 2018.
  18. A. Ranta-aho, Validation of Depletion Codes against VVER-440 Spent Fuel Data, vol. 31, NEA/NSC/DOC(2006, Prague, Czech Republic, 2006. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=NEA/NSC/DOC(2006)31&docLanguage=En.
  19. J. Jang, Y. Chezerov, T. Jo, S. Quoc, W. Dzianisau, J. Lee, D. Park, Lee, Verification of RAST-K Hexagonal Transient Solver with OCED/NEA Benchmark Problem of KALININ-3 NPP, KNS Winter Meeting, Korea, 2020. Online.
  20. S. Quoc, W. Dzianisau, D. Lee, J. Lee, T. Jang T, Verification of RAST-K Hexagonal Analysis Module with SNR and VVER-440 Benchmarks, KNS Winter Meeting, Korea, 2020 [Online].
  21. J. Jang, M. Hursin, W. Lee, A. Pautz, M. Papadionysiou, H. Ferroukhi, D. Lee, Analysis of Rostov-II benchmark using conventional two-step code systems, Energies 15 (2022) 3318, https://doi.org/10.3390/en15093318.
  22. J. Jang, Development of Nodal Diffusion Code for VVER and HTGR Analysis with Advanced Semi Analytic Nodal Method, Doctoral Thesis, Ulsan National Institute of Science and Technology, 2023.
  23. J.Y. Cho, C.H. Kim, Higher order polynomial expansion nodal method for hexagonal core neutronics analysis, Ann. Nucl. Energy 25 (1998) 1021-1031, https://doi.org/10.1016/S0306-4549(97)00101-1.
  24. S. Choi, W. Kim, J. Choe, W. Lee, H. Kim, B. Ebiwonjumi, E. Jeong, K. Kim, D. Yun, H. Lee, D. Lee, Development of high-fidelity neutron transport code STREAM, Comput. Phys. Commun. 264 (2021) 107915, https://doi.org/10.1016/j.cpc.2021.107915.
  25. A. Quarteroni, R. Sacco, F. Saleri. Numerical Mathematics, 2nd ed., Springer, 2007, ISBN 978-1-4757-7394-1 https://doi.org/10.1007/b98885.
  26. R.J.J. Stamm'ler, M.J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic Press Inc. (LONDON) LTD, 1983, 0-12-663320-7.
  27. S. Borresen, T. Bahadir, M. Kruners, Validation of CMS/SNF Calculations against Preliminary CLAB Decay Heat Measurements, Transactions of the American nuclear society, Omni Shoreham Hotel Washington, D.C., 2004. November 14-18.
  28. S. Borresen, Spent fuel analyses based on in-core fuel management calculations, in: Proc. PHYSOR (2004). The Physics of Fuel Cycles and Advanced Nuclear Systems, Global Developments, Chicago, Illinois, 2004. April 25-29.
  29. bib29sref29 Markova, L., Simplified benchmark specif. Based on vol. 2670 ISTC VVER PIE. 12th Meeting of AER Working Group E on "Physical Problems of Spent Fuel, Radwaste and Nuclear Power Plants Decommissioning", Modra, Slovakia, April 16-18, 2007, https://www.oecd-nea.org/science/wpncs/buc/specifications/istc2670/2670%20benchmark%20specification.pdf.
  30. F. Michel-Sendis, I. Gauld, J.S. Martinez, C. Alejano, M. Bossant, D. Boulanger, O. Cabellos, V. Chrapciak, J. Conde, I. Fast, M. Gren, K. Govers, M. Gysemans, V. Hannstein, F. Havluj, M. Hennebach, G. Hordosy, G. Ilas, R. Kilger, R. Mills, D. Mountford, P. Ortego, G. Radulescu, M. Rahimi, A. Ranta-Aho, K. Rantamaki, B. Ruprecht, N. Soppera, M. Stuke, K. Suyama, S. Tittelbach, C. Tore, S.V. Winckel, A. Vasiliev, T. Watanabe, T. Yamamoto, T. Yamamoto, SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operating data, Ann. Nucl. Energy 110 (2017) 779-788, https://doi.org/10.1016/j.anucene.2017.07.022.s.
  31. M.B. Chadwick, P. Oblozinsky, M. Herman, N.M. Greene, R.D. McKnight, D. L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, P. Talou, H. Trellue, M.C. White, W.B. Wilson, R. Arcilla, C.L. Dunford, S.F. Mughabghab, B. Pritychenko, D. Rochman, A.A. Sonzogni, C.R. Lubitz, T.H. Trumbull, J. P. Weinman, D.A. Brown, D.E. Cullen, D.P. Heinrichs, D.P. McNabb, H. Derrien, M. E. Dunn, N.M. Larson, L.C. Leal, A.D. Carlson, R.C. Block, J.B. Briggs, E.T. Cheng, H.C. Huria, M.L. Zerkle, K.S. Kozier, A. Courcelle, V. Pronyaev, S.C. van der Marck, ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets, ENDF/B. 107 (2006) 2931-3060, https://doi.org/10.1016/j.nds.2006.11.001.
  32. O. Leray, D. Rochman, P. Grimm, H. Ferroukhi, A. Vasiliev, M. Hursin, G. Perret, A. Pautz, Nuclear data uncertainty propagation on spent fuel nuclide compositions, Ann. Nucl. Energy 94 (2016) 603-611, https://doi.org/10.1016/j.anucene.2016.03.023.
  33. J. Jang, C. Kong, B. Ebiwonjumi, Y. Jo, D. Lee, Uncertainties of PWR spent nuclear fuel isotope inventory for back-end cycle analysis with Stream/RAST-K, Ann. Nucl. Energy 158 (2021), https://doi.org/10.1016/j.anucene.2021.108267.
  34. Techniques and equipment to determine nuclide composition, Isotopic Mass and Fuel Burnup Fraction in Fuel Samples. Interim Progress Report, Task 6, Burnup Credit Project, 2003, p. 2670р.
  35. ASTM E-244-80, Standard Test Method for Atom Percent Fission in Uranium and Plutonium Fuel (Mass Spectrometric Method).
  36. MATLAB, The MathWorks Incorp, Natick, Massachusetts, 2022.
  37. J. Jang, C. Kong, B. Ebiwonjumi, A. Cherezov, Y. Jo, D. Lee, Uncertainty quantification in decay heat calculation of spent nuclear fuel by STREAM/RAST-K, Nucl. Eng. Technol. 53 (2021) 2803-2815, https://doi.org/10.1016/j.net.2021.03.010.
  38. B. Ebiwonjumi, S. Choi, M. Lemaire, D. Lee, H.C. Shin, H.S. Lee, Verification and validation of radiation source term capabilities in Stream, Ann. Nucl. Energy 124 (2019) 80-87, https://doi.org/10.1016/j.anucene.2018.09.034.
  39. T.S. Lotsch, E. Kliem, V. Bilodid, A. Khalimonchuk, Y. Kuchin, M. Ovdienko, R. Ieremenko, G. Blank, Schultz, The x2 benchmark for vver-1000 reactor calculations results and status, in: Novel Vision of Scientific & Technical Support for Regulation of Nuclear Energy Safety: Competence, Transparency, Responsibility, Dedicated to the 25th Anniversary of the SSTC, National Rosacea Society, Kiev, Ukraine, 2017. March 22-23.
  40. M. Rezaeian, J. Kamali, Effect of a dual-purpose cask payload increment of spent fuel assemblies from VVER 1000 Bushehr Nuclear Power Plant on basket criticality, Appl. Radiat. Isot. 119 (2017) 80-85, https://doi.org/10.1016/j.apradiso.2016.10.008.
  41. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
  42. S. Choi, W. Kim, J. Choe, W. Lee, H. Kim, B. Ebiwonjumi, E. Jeong, H. Lee, D. Yun, D. Lee, Development of high-fidelity neutron transport code STREAM, Comput. Phys. Commun. 264 (2021), 107915, https://doi.org/10.1016/j.cpc.2021.107915.
  43. S. Choi, K. Smith, H. Chul Lee, D. Lee, Impact of inflow transport approximation on light water reactor analysis, J. Comput. Phys. 299 (2015) 352-373, https://doi.org/10.1016/j.jcp.2015.07.005.
  44. H. Yun, K. Park, W. Choi, S.G. Hong, An efficient evaluation of depletion uncertainty for a GBC-32 dry storage cask with PLUS7 fuel assemblies using the Monte Carlo sampling method, Ann. Nucl. Energy 110 (2017) 679-691. https://doi.org/10.1016/j.anucene.2017.07.020
  45. S. Choi, H. Lee, S.G. Hong, D. Lee, Resonance self-shielding methodology of new neutron transport code STREAM, J. Nucl. Sci. Technol. 52 (9) (2015) 1133-1150, https://doi.org/10.1080/00223131.2014.993738.
  46. T. Lahtinen, Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code, Kerntechnik 79 (2014) 303-313, https://doi.org/10.3139/124.110464.
  47. Thermal Neutron Capture Cross Sections Resonance Integrals and G-Factors, S.F. Mughabghab, Brookhaven National Laboratory, Upton, New York, U.S.A, 2003, pp. 11973-15000. https://www.osti.gov/etdeweb/servlets/purl/20332542.February.
  48. I.C. Gauld, U. Mertyurek, C. I, U. Gauld, Mertyurek, alidation of BWR spent nuclear fuel isotopic predictions with applications to burnup credit, Nucl. Eng. Des. 345 (2019) 110-124, https://doi.org/10.1016/j.nucengdes.2019.01.026.
  49. R. Ihaka, R. Gentleman, R: a language for data analysis and graphics, J. Comput. Graph Stat. 5 (1995) 299-314, https://doi.org/10.2307/1390807.
  50. W.R. Blischke, D.N. Prabhakar Murthy, Reliability: Modeling, Prediction, and Optimization, Wiley, 2000, 9780471184508.