과제정보
The authors would like to thank the reviewers for their valuable comments and suggestions that helped improve the quality of this manuscript.
참고문헌
- F. Khan, S. Rathnayaka, S. Ahmed, Methods and models in process safety and risk management: past, present and future, Process Saf. Environ. Protect. 98 (2015) 116-147. https://doi.org/10.1016/j.psep.2015.07.005
- E. Zarei, F. Khan, R. Abbassi, A dynamic human-factor risk model to analyze safety in sociotechnical systems, Process Saf. Environ. Protect. 164 (2022) 479-498. https://doi.org/10.1016/j.psep.2022.06.040
- X.C. Xie, D.Y. Guo, Human factors risk assessment and management: process safety in engineering, Process Saf. Environ. Protect. 113 (2018) 467-482. https://doi.org/10.1016/j.psep.2017.11.018
- National Research Council, Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants, The National Academies Press, 2014.
- Center for Chemical Process Safety, Emergency Planning: Preparedness, Prevention and Response, first ed., Wiley-AIChE, 2005.
- L. Ding, F. Khan, J. Ji, Risk-based safety measure allocation to prevent and mitigate storage fire hazards, Process Saf. Environ. Protect. 135 (2020) 282-293. https://doi.org/10.1016/j.psep.2020.01.008
- T. Dalijono, K. Lowe, H.J. Hoher, Development and verification of a new approach for operator action analysis, Process Saf. Environ. Protect. 83 (4) (2005) 331-337. https://doi.org/10.1205/psep.05018
- D.Y. Ru, H.Y. Wen, Y.T. Zhang, A pre-generation of emergency reference plan model of public health emergencies with case-based reasoning, Risk Manag. Healthc. Pol. 15 (2022) 2371-2388. https://doi.org/10.2147/RMHP.S385967
- Nuclear Energy Institute, Emergency Response Procedures and Guidelines for beyond Design Basis Events and Severe Accidents, 2016. NEI14-01.
- The Federal Emergency Management Agency, Guide for all-hazard emergency operations planning, State and Local Guide (SLG) 101 (1996).
- B. Hanna, T.C. Son, N. Dinh, AI-guided reasoning-based operator support system for the nuclear power plant management, Ann. Nucl. Energy 154 (108079) (2021) 1-15. https://doi.org/10.1016/j.anucene.2020.108079
- R.H. Fusillo, G.J. Powers, A synthesis method for chemical plant operating procedures, Comput. Chem. Eng. 11 (4) (1987) 369-382. https://doi.org/10.1016/0098-1354(87)85018-4
- R. Batres, Generation of operating procedures for a mixing tank with a micro generic algorithm, Comput. Chem. Eng. 57 (2013) 112-121. https://doi.org/10.1016/j.compchemeng.2013.04.016
- R. Batres, Simulation-based planning of shutdown operations, Proc. Comput. Sci. 22 (2013) 1294-1302. https://doi.org/10.1016/j.procs.2013.09.217
- M.L. Yeh, C.T. Chang, An automata based method for online synthesis of emergency response procedures in batch processes, Comput. Chem. Eng. 38 (2012) 151-170. https://doi.org/10.1016/j.compchemeng.2011.11.008
- Y.F. Wang, H.H. Chou, C.T. Chang, Generation of batch operating procedures for multiple material-transfer tasks with Petri nets, Comput. Chem. Eng. 29 (2004) 1822-1836. https://doi.org/10.1016/j.compchemeng.2005.03.001
- C.T. Chang, H.Y. Lee, V.S.K. Adi, Petri net-based operating procedures, in: Process Plant Operating Procedures. Advances in Industrial Control, Springer, Cham, 2021.
- K. Hoshi, K. Nagasawa, Y. Yamashita, et al., Automatic generation of operating procedures for batch production plants by using graph representations, J. Chem. Eng. Jpn. 35 (4) (2002) 377-383. https://doi.org/10.1252/jcej.35.377
- Y. Liu, Z.P. Fan, Y. Yuan, et al., A FTA-based method for risk decision-making in emergency response, Comput. Oper. Res. 42 (2014) 49-57. https://doi.org/10.1016/j.cor.2012.08.015
- G.S. Saini, P. Pournazari, P. Ashok, et al., Intelligent action planning for well construction operations demonstrated for hole cleaning optimization and automation, Energies 15 (15) (2022) 5749.
- M.C. Darling, G.F. Luger, T.B. Jones, et al., Intelligent modeling for nuclear power plant accident management, Int. J. Artif. Intell. Tool. 27 (2) (2018) 1-22. https://doi.org/10.1142/S0218213018500033
- E. Waller, G. Bereznai, J. Shaw, et al., A simulator-based nuclear reactor emergency response training exercise, J.Emerg. Manag. 15 (6) (2017) 367-378. https://doi.org/10.5055/jem.2017.0345
- N. Vaez, F. Nourai, RANDAP: an integrated framework for reliability analysis of detailed action plans of combined automatic-operator emergency response taking into account control room operator errors, J. Loss Prev. Process. Ind. 26 (6) (2013) 1366-1379. https://doi.org/10.1016/j.jlp.2013.08.011
- F. Psarommatis, D. Kiritsis, A hybrid decision support system for automating decision making in the event of defects in the era of zero defect manufacturing, J. Ind. Inform. Integrat. 26 (2022), 100263.
- A. Gofuku, T. Inoue, T. Sugihara, A technique to generate plausible counter-operation procedures for an emergency situation based on a model expressing functions of components, J. Nucl. Sci. Technol. 54 (5) (2017) 578-588. https://doi.org/10.1080/00223131.2017.1292966
- M.C. Song, A. Gofuku, M. Lind, Model-based and rule-based synthesis of operating procedures for planning severe accident management strategies, Prog. Nucl. Energy 123 (2020), 103318.
- M.C. Song, M. Lind, J. Yang, et al. Fan, Y. Yuan, et al., Integrative decision support for accident emergency response by combining MFM and GO-FLOW, Process Saf. Environ. Protect. 155 (2021) 131-144. https://doi.org/10.1016/j.psep.2021.09.015
- J. Yang, Y. Xue, X.Y. Dai, et al., An intelligent operational supervision system for operability and reliability analysis of operators manual actions in task implementation, Process Saf. Environ. Protect. 158 (2022) 340-359. https://doi.org/10.1016/j.psep.2021.12.023
- X.Y. Dai, M. Yang, J.P. Wang, et al., An operation scheme generation method for nuclear power plant operation under the condition of no operating procedures guided, Electronics 12 (2023) 1836.
- M. Ghallab, D. Nau, P. Traverso, Automated Planning-Theory and Practice, Elsevier, 2004.
- R. Nourjou, H. Tatano, Search algorithm for optimal execution of incident commander guidance in macro action planning, Int. J. Intell. Syst. Technol. Appl. 14 (3/4) (2015) 354-384. https://doi.org/10.1504/IJISTA.2015.074335
- C. Chen, Y.B. Yang, M.T. Wang, et al., Characterization and evolution of emergency scenarios using hybrid Petri net, Process Saf. Environ. Protect. 114 (2018) 133-142. https://doi.org/10.1016/j.psep.2017.12.016
- A. Arora, H. Fiorino, D. Pellier, et al., A review of learning planning action models, Knowl. Eng. Rev. 33 (2018), e20.
- S. Jabbar, External Memory Algorithms for State Space Exploration in Model Checking and Action Planning, Doktons der Naturwissenschaften, 2008.
- S. Kubosawa, T. Onishi, Y. Tsuruoka, Computing operation procedures for chemical plants using whole-plant simulation models, Control Eng. Pract. 114 (2021), 104878.
- M.C. Song, A. Gofuku, Planning of alternative countermeasures for a station blackout at a boiling water reactor using multilevel flow modeling, Nucl. Eng. Technol. 50 (2018) 542-552. https://doi.org/10.1016/j.net.2018.03.004
- K. Khandelwal, D.P. Sharma, Hybrid reasoning model for strengthening the problem solving capability of expert systems, Int. J. Adv. Comput. Sci. Appl. 4 (10) (2013) 88-94. https://doi.org/10.14569/IJACSA.2013.041014
- T. Matsuoka, M. Kobayashi, GO-FLOW: a new reliability analysis methodology, Nucl. Sci. Eng. 98 (1) (1988) 64-78. https://doi.org/10.13182/NSE88-A23526
- T. Matsuoka, M. Kobayashi, K. Takemura, The GO-FLOW methodology: a reliability analysis of the emergency core cooling system of a marine reactor under accident conditions, Nucl. Technol. 84 (3) (1989) 285-295. https://doi.org/10.13182/NT89-A34212
- J.K. Li, Y.Z. Lu, X.N. Liu, et al., Reliability analysis of cold-standby phased-mission system based on GO-FLOW methodology and the universal generating function, Reliab. Eng. Syst. Saf. 233 (2023), 109125.
- T. Matsuoka, M. Kobayashi, The GO-FLOW reliability analysis methodology-analysis of common cause failures with uncertainty, Nucl. Eng. Des. 175 (3) (1997) 205-214. https://doi.org/10.1016/S0029-5493(97)00038-1
- M. Hashim, H. Yoshikawa, T. Matsuoka, et al., Common cause failure analysis of PWR containment spray system by GO-FLOW methodology, Nucl. Eng. Des. 262 (2013) 350-357. https://doi.org/10.1016/j.nucengdes.2013.04.028
- M. Hashim, H. Yoshikawa, T. Matsuoka, et al., Considerations of uncertainties in evaluating dynamic reliability by GO-FLOW methodology-example study of reliability monitor for PWR safety system in the risk monitor system, J. Nucl. Sci. Technol. 50 (7) (2013) 695-708. https://doi.org/10.1080/00223131.2013.790304
- M. Hashim, H. Yoshikawa, T. Matsuoka, et al., Reliability analysis of phased mission systems by considering the concept of sensitivity analysis, uncertainty analysis and common cause failure analysis using the GO-FLOW methodology, Res. J. Appl. Sci. Eng. Technol. 5 (12) (2013) 3465-3474. https://doi.org/10.19026/rjaset.5.4594
- M. Hashim, T. Matsuoka, M. Yang, Development of a reliability monitor for the safety related subsystem of a PWR considering the redundancy and maintenance of components by fault tree and GO-FLOW methodologies, Int. Electron.J.Nuclear Saf. Simulat. ISSN 2185-0577, 3(2): 164-175.
- T. Matsuoka, Y. Kato, Modeling f a human performance by the GO-FLOW methodology, in: Proceedings of the 1st International Symposium on Socially and Technically Symbiotic Systems, Okayama, Japan, August 29-31, 2012.
- H.X. Gu, G.J. Liu, J.X. Li, et al., A reliability-based mapping scheme for assessing system operational performance with erroneous human behavior at NPPs, IEEE Access 7 (2019) 123416-123429. https://doi.org/10.1109/ACCESS.2019.2938024
- X.Y. Dai, M. Yang, J.P. Wang, et al., Methodology for updating GO-FLOW model to handle scenario changes in nuclear power plants, Front. Energy Res. 10 (2023), 1034845.
- J. Yang, X.Y. Dai, W.Q. Chen, et al., A success-oriented analysis technique for operational risk supervision in sea-borne nuclear power plants, Nucl. Eng. Des. 340 (2018) 229-239. https://doi.org/10.1016/j.nucengdes.2018.09.030
- H.X. Lu, M. Yang, X.Y. Dai, et al., Reliability modeling by extended GO-FLOW methodology for automatic control component and system at NPP, Nucl. Eng. Des. 342 (2019) 264-275. https://doi.org/10.1016/j.nucengdes.2018.11.030
- T. Matsuoka, An exact method for solving logical loops in reliability analysis, Reliab. Eng. Syst. Saf. 94 (8) (2009) 1282-1288. https://doi.org/10.1016/j.ress.2009.01.007
- T. Matsuoka, Reliability analysis of a BWR plant system at startup stage-analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem, Reliab. Eng. Syst. Saf. 233 (2023), 109086.
- M. Hashim, H. Yoshikawa, T. Matsuoka, et al., Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology, J. Nucl. Sci. Technol. 51 (4) (2014) 526-542. https://doi.org/10.1080/00223131.2014.881727
- F. Tao, D.G. Lu, T. Wakabayashi, Network Reliability Analysis of Digital Instrument and Control System with GO-FLOW Methodology, vol. 18, Transactions of Tianjin University, 2012, pp. 73-78.
- M. Yang, W.L. Wang, J. Yang, et al., Development of a functional platform for system reliability monitoring of nuclear power plant, Nuclear Saf. Simulat. 5 (3) (2014) 177-185.
- M. Hashim, H. Yoshikawa, M. Yang, et al., Development of reliability monitor by GO-FLOW methodology for the safety related sub-systems in PWR, Int. J. Nucl. Energy Sci. Technol. 8 (1) (2014) 21-36. https://doi.org/10.1504/IJNEST.2014.057880
- J. Yang, M. Yang, H. Yoshikawa, et al., Development of a risk monitoring system for nuclear power plants based on GO-FLOW methodology, Nucl. Eng. Des. 278 (2014) 255-267. https://doi.org/10.1016/j.nucengdes.2014.07.035
- J. Yang, M. Yang, H. Yoshikawa, et al., A method for developing Living PSA for NPPs by using the GO-FLOW methodology, Nuclear Saf. Simulat. 5 (1) (2014) 70-82.
- H.X. Lu, M. Yang, Z.H. Xu, et al., Study on evidence-based LPSA method in nuclear power plant under abnormal operating conditions, Ann. Nucl. Energy 151 (107874) (2021) 1-17. https://doi.org/10.1016/j.anucene.2020.107874
- J. Yang, M. Wang, D.Q. Guo, et al., Use of a success-oriented GO-FLOW method for system configuration risk management at NPPs, Ann. Nucl. Energy 143 (5) (2020), 107452.
- J. Yang, M. Yang, W.L. Wang, Online application of a risk management system for risk assessment and monitoring at NPPs, Nucl. Eng. Des. 305 (2016) 200-212. https://doi.org/10.1016/j.nucengdes.2016.05.025
- T. Matsuoka, GO-FLOW methodology-basic concept and integrated analysis framework for its applications, Int. J. Nuclear Saf. Simulat. 1 (3) (2013) 198-206.
- T. Aldemir, Advanced Concepts in Nuclear Energy Risk Assessment and Management, World Scientific, 2018.
- X. Ma, H.S. Gao, Cross-regional cold chain fresh product logistics network based on GO-FLOW analysis, Int. J. Metrol. Qual. Eng. 11 (7) (2020) 1-5. https://doi.org/10.1051/ijmqe/2019016
- D.M. Fan, Z.L. Wang, L.L. Liu, et al., A modified GO-FLOW methodology with common cause failure based on discrete time Bayesian network, Nucl. Eng. Des. 305 (2016) 476-488. https://doi.org/10.1016/j.nucengdes.2016.06.010
- M. Cunningham, B. Chen, D. Grabaskas, et al., Success Path Method: Definitions and Technical Requirements, ANE/ESIA-22/6, 2022.
- D.J. Campbell, Task complexity: a review and analysis, Acad. Manag. Rev. 13 (1) (1988) 40-52. https://doi.org/10.2307/258353
- P. Liu, Z.Z. Li, Comparison of task complexity measures for emergency operating procedures: convergent validity and predictive validity, Reliab. Eng. Syst. Saf. 121 (2014) 289-293. https://doi.org/10.1016/j.ress.2013.09.006
- USNRC, Generic auxiliary feedwater system, Westinghouse Technol. Syst. Manual, Sect. 5.7 (2003). Revision 0603.
- Z.Y. He, J. Yang, Y.Y. Chu, An automated GO-FLOW modeling tool for system reliability analysis, in: Proceedings of the 2023 30th International Conference on Nuclear Engineering (ICONE30), May 21-26, 2023. Kyoto, Japan.
- J.B. Fussel, E.B. Henry, N.H. Marshall, MOCUS: a Computer Program to Obtain Minimal Sets from Fault Trees, ANCR-1156, 1974.