DOI QR코드

DOI QR Code

Image reconstruction algorithm for momentum dependent muon scattering tomography

  • Received : 2023.05.22
  • Accepted : 2023.12.01
  • Published : 2024.05.25

Abstract

Nondestructive radiography using cosmic ray muons has been used for decades to monitor nuclear reactor and spent nuclear fuel storage. Because nuclear fuel assemblies are highly dense and large, typical radiation probes such as x-rays cannot penetrate these target imaging objects. Although cosmic ray muons are highly penetrative for nuclear fuels as a result of their relatively high energy, the wide application of muon tomography is limited because of naturally low cosmic ray muon flux. This work presents a new image reconstruction algorithm to maximize the utility of cosmic ray muon in tomography applications. Muon momentum information is used to improve imaging resolution, as well as muon scattering angle. In this work, a new convolution was introduced known as M-value, which is a mathematical integration of two measured quantities: scattering angle and momentum. It captures the objects' quantity and density in a way that is easy to use with image reconstruction algorithms. The results demonstrate how to reconstruct images when muon momentum measurements are included in a typical muon scattering tomography algorithm. Using M-value improves muon tomography image resolution by replacing the scattering angle value without increasing computation costs. This new algorithm is projected to be a standard nondestructive radiography technique for spent nuclear fuel and nuclear material management.

Keywords

Acknowledgement

This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy.

References

  1. C.D. Anderson, S.H. Neddermeyer, Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level, Phys. Rev. 50 (4) (1936) 263-271, https://doi.org/10.1103/PhysRev.50.263. 
  2. S.H. Neddermeyer, C.D. Anderson, Note on the nature of cosmic-ray particles, Phys. Rev. 51 (884) (1937), https://doi.org/10.1103/PhysRev.51.884. 
  3. H. Miyadera, C.L. Morris, Muon scattering tomography: review, Appl. Opt. 61 (6) (Feb. 2022) C154, https://doi.org/10.1364/ao.445806. 
  4. IAEA, Muon Imaging, IAEA-TECDOC-2012, 2022. 
  5. K. Morishima, et al., Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons, Nature 386 (390) (2017) 4-14.  https://doi.org/10.1038/nature24647
  6. H.K.M. Tanaka, T. Kusagaya, H. Shinohara, Radiographic visualization of magma dynamics in an erupting volcano, Nat. Commun. 5 (2014) 3381, https://doi.org/10.1038/ncomms4381. 
  7. L.W. Alvarez, et al., Search for hidden chambers in the pyramids, Science 167 (1970) 832-839 (1979).  https://doi.org/10.1126/science.167.3919.832
  8. S. Procureur, et al., Precise characterization of a corridor-shaped structure in Khufu's Pyramid by observation of cosmic-ray muons, Nat. Commun. 14 (1) (Dec. 2023), https://doi.org/10.1038/s41467-023-36351-0. 
  9. G. Saracino, et al., Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples), Sci. Rep. 7 (1) (Dec. 2017), https://doi.org/10.1038/s41598-017-01277-3. 
  10. H.K.M. Tanaka, T. Kusagaya, H. Shinohara, Radiographic visualization of magma dynamics in an erupting volcano, Nat. Commun. 5 (2014) 3381, https://doi.org/10.1038/ncomms4381. 
  11. H.K.M. Tanaka, Japanese volcanoes visualized with muography, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0142. Royal Society Publishing. 
  12. N. Lesparre, D. Gibert, J. Marteau, D. Carbone, E. Galichet, Geophysical muon imaging: feasibility and limits, Geophys. J. Int. 183 (2010) 1348-1361.  https://doi.org/10.1111/j.1365-246X.2010.04790.x
  13. W.C. Priedhorsky, et al., Detection of high-Z objects using multiple scattering of cosmic ray muons, Rev. Sci. Instrum. 74 (10) (2003) 4294-4297, https://doi.org/10.1063/1.1606536. 
  14. L.J. Schultz, K.N. Borozdin, J.J. Gomez, G.E. Hogan, J.A. Mcgill, Image reconstruction and material Z discrimination via cosmic ray muon radiography, Nucl. Instrum. Methods Phys. Res. 519 (2004) 687-694.  https://doi.org/10.1016/j.nima.2003.11.035
  15. S. Chatzidakis, C.K. Choi, L.H. Tsoukalas, Analysis of spent nuclear fuel imaging using multiple Coulomb scattering of cosmic muons, IEEE Trans. Nucl. Sci. 63 (6) (2016) 2866-2874.  https://doi.org/10.1109/TNS.2016.2618009
  16. S. Chatzidakis, C.K. Choi, L.H. Tsoukalas, Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit, Nucl. Instrum. Methods Phys. Res. A 828 (2016) 37-45.  https://doi.org/10.1016/j.nima.2016.03.084
  17. C. Thomay, J. Velthuis, T. Poffley, P. Baesso, D. Cussans, L. Frazao, Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography, J. Instrum. 11 (3) (2016). 
  18. D. Poulson, J. Bacon, M. Durham, E. Guardincerri, C.L. Morris, H.R. Trellue, Application of muon tomography to fuel cask monitoring, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0052. 
  19. J. Bae, S. Chatzidakis, Monitoring Spent Nuclear Fuel in a Dry Cask Using Momentum Integrated Muon Scattering Tomography, Transactions of American Nuclear Society, 2022. 
  20. S. Procureur, et al., 3D imaging of a nuclear reactor using muography measurements, Sci. Adv. 9 (2023) [Online]. Available:. 
  21. J. Perry, et al., Imaging a nuclear reactor using cosmic ray muons, J. Appl. Phys. 113 (18) (May 2013), https://doi.org/10.1063/1.4804660. 
  22. D. Mahon, et al., First-of-a-kind muography for nuclear waste characterization, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0048. 
  23. G. Yang, et al., Novel muon imaging techniques, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0062. 
  24. K. Gnanvo, et al., Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors, IEEE Nuclear Science Symposium & Medical Imaging Conference, 2010, pp. 552-559. 
  25. V. Anghel, et al., Cosmic Ray Muon Tomography System Using Drift Chambers for the Detection of Special Nuclear Materials, IEEE NSS MIC, 2010, pp. 547-551. 
  26. J. Bae, S. Chatzidakis, Momentum-dependent cosmic ray muon computed tomography using a fieldable muon spectrometer, Energies 15 (2666) (2022), https://doi.org/10.3390/en15072666. 
  27. J. Bae, S. Chatzidakis, The Effect of Cosmic Ray Muon Momentum Measurement for Monitoring Shielded Special Nuclear Materials, INMM/ESARDA Joint Annual Meeting, 2021. 
  28. S. Barnes, et al., Cosmic-ray tomography for border security, Instruments 7 (1) (Mar. 01, 2023), https://doi.org/10.3390/instruments7010013. MDPI. 
  29. W. He, et al., Discrimination of high-Z materials in sealed containers with cosmic ray muons, J. Instrum. 13 (10) (Oct. 2018), https://doi.org/10.1088/1748-0221/13/10/P10017. 
  30. S. Chatzidakis, et al., Exploring the use of muon momentum for detection of nuclear material within shielded spent nuclear fuel dry casks, American Nuclear Society Annual Meeting 116 (2017) 190-193. 
  31. C. Morris, et al., Measuring Momentum for Charged Particle Tomography, US patent 7838841B2, 2010. 
  32. S. Palestini, The muon spectrometer of the ATLAS experiment, Nucl. Phys. B 125 (2003) 337-345.  https://doi.org/10.1016/S0920-5632(03)91013-9
  33. A.J. Stevens, et al., Direct momentum determination of a medium-energy particle beam using time-of-flight and range techniques, Nucl. Instrum. Methods 97 (1971) 1-4.  https://doi.org/10.1016/0029-554X(71)90507-6
  34. V. Anghel, et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer, Nucl. Instrum. Methods Phys. Res. A 798 (2015) 12-23.  https://doi.org/10.1016/j.nima.2015.06.054
  35. J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Sci. Rep. 12 (2559) (2022), https://doi.org/10.1038/s41598-022-06510-2. 
  36. J. Bae, S. Chatzidakis, Fieldable muon momentum measurement using coupled pressurized gaseous Cherenkov detectors, Trans. Am. Nucl. Soc. 125 (1) (2021) 400-403.  https://doi.org/10.1109/NSS/MIC44867.2021.9875534
  37. J. Bae, S. Chatzidakis, A Compact High-Resolution Muon Spectrometer Using Multi-Layer Gas Cherenkov Radiators, 2022. 
  38. J. Bae, A Novel Muon Spectrometer Using Multi-Layer Pressurized Gas Cherenkov Radiators for Muon Tomography, 2022, https://doi.org/10.25394/PGS.19686633.v1. 
  39. S. Chatzidakis, J. Bae, Advances in cosmic ray muon computed tomography and fieldable spectroscopy, HNPS Adv. Nucl. Phys. 28 (Oct. 2022) 184-190, https://doi.org/10.12681/hnps.3584. 
  40. J. Bae, S. Chatzidakis, Development of compact muon spectrometer using multiple pressurized gas Cherenkov radiators, Results Phys. 39 (Aug. 2022), https://doi.org/10.1016/j.rinp.2022.105771. 
  41. J. Bae, S. Chatzidakis, A Cosmic Ray Muon Spectrometer Using Pressurized Gaseous Cherenkov Radiators, IEEE Nuclear Science Symposium and Medical Imaging Conference, 2021. 
  42. C.A. Ayre, J.M. Baxendale, C.J. Hume, B.C. Nandi, M.G. Thompson, M.R. Whalley, Precise measurement of the vertical muon spectrum in the range 20-500 GeV/c, J. Phys. G Nucl. Phys. 584 (1975) 584-600, https://doi.org/10.1088/0305-4616/1/5/010. 
  43. O.C. Allkofer, K. Carstensen, W.D. Dau, Absolute cosmic ray muon spectrum at sea level, Phys. Lett. B 36 (425) (1971). 
  44. L3 Collaboration, Measurement of the atmospheric muon spectrum from 20 to 3000 GeV, Phys. Lett. B 598 (15) (2004). 
  45. S. Haino, et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594 (2004) 35-46.  https://doi.org/10.1016/j.physletb.2004.05.019
  46. K.N. Borozdin, G.E. Hogan, C. Morris, C. William, A. Saunders, L.J. Schultz, Radiographic imaging with cosmic-ray muons, Nature 422 (277) (2003) 20-22.  https://doi.org/10.1038/422020a
  47. Particle Data Group, Atomic and Nuclear Properties of Materials for More than 350 Materials, 2020. https://pdg.lbl.gov/2020/AtomicNuclearProperties/index.html. 
  48. L.J. Schultz, et al., Statistical reconstruction for cosmic ray muon tomography, in: IEEE Transactions on Image Processing, 2007, pp. 1985-1993. 
  49. M. Benettoni, et al., Noise reduction in muon tomography for detecting high density objects, J. Instrum. 8 (12) (2013), https://doi.org/10.1088/1748-0221/8/12/P12007. 
  50. G. Wang, L.J. Schultz, J. Qi, S. Member, Bayesian image reconstruction for improving detection performance of muon tomography, in: IEEE Transactions on Image Processing, 2009, pp. 1080-1089. 
  51. S. Chatzidakis, Z. Liu, J.P. Hayward, J.M. Scaglione, A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography, J. Appl. Phys. 123 (2018), https://doi.org/10.1063/1.5024671. 
  52. Z. Liu, S. Chatzidakis, J.M. Scaglione, C. Liao, H. Yang, J.P. Hayward, Muon tracing and image reconstruction algorithms for cosmic ray muon computed tomography, IEEE Trans. Image Process. 28 (1) (Jan. 2019) 426-435, https://doi.org/10.1109/TIP.2018.2869667. 
  53. L. Schultz, et al., ML/EM reconstruction algorithm for cosmic ray muon tomography, in: IEEE Nuclear Science Symposium Conference Record, Institute of Electrical and Electronics Engineers Inc., 2006, pp. 2574-2577, https://doi.org/10.1109/NSSMIC.2006.354434. 
  54. G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering, Nucl. Instrum. Methods Phys. Res. 58 (7991) (1991) 6-10.  https://doi.org/10.1016/0168-583X(91)95671-Y
  55. Y. Tsai, Pair production and bremsstrahlung of charged leptons, Rev. Mod. Phys. 46 (4) (1974) 815-851.  https://doi.org/10.1103/RevModPhys.46.815
  56. P.A. Zyla, et al., The review of particle Physics (2020), Prog. Theor. Experiment. Phys. 8 (2020). 
  57. G. Moliere, Theorie der Streuung schneller geladener teilchen II mehrfach-und vielfachstreuung, Z. Naturforsch. 3 (2) (1948) 78-97.  https://doi.org/10.1515/zna-1948-0203
  58. H.A. Bethe, Moliere's theory of multiple scattering, Phys. Rev. 89 (6) (1953) 1256-1266.  https://doi.org/10.1103/PhysRev.89.1256
  59. M.A. Meyer, Multiple Coulomb scattering from finite nuclei, Nucl. Phys. 28 (1961) 512-518.  https://doi.org/10.1016/0029-5582(61)90042-6
  60. L.A. Kulchitsky, G.D. Latyshev, The multiple scattering of fast electrons, Phys. Rev. 61 (1942). 
  61. Geant4 Collaboration, Phys. Ref. Manual (Release 10 (4) (2017). 
  62. S. Agostinelli, et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res. 506 (3) (2003) 250-303.  https://doi.org/10.1016/S0168-9002(03)01368-8
  63. E. Rutherford, The scattering of α and β particles by matter and the structure of the atom, Philosoph.Magaz. J. Sci. 21 (125) (1911). 
  64. J.R. Greis, Multiple Coulomb Scattering of Muons in MICE, University of Warwick, 2017.