Acknowledgement
This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy.
References
- C.D. Anderson, S.H. Neddermeyer, Cloud chamber observations of cosmic rays at 4300 meters elevation and near sea-level, Phys. Rev. 50 (4) (1936) 263-271, https://doi.org/10.1103/PhysRev.50.263.
- S.H. Neddermeyer, C.D. Anderson, Note on the nature of cosmic-ray particles, Phys. Rev. 51 (884) (1937), https://doi.org/10.1103/PhysRev.51.884.
- H. Miyadera, C.L. Morris, Muon scattering tomography: review, Appl. Opt. 61 (6) (Feb. 2022) C154, https://doi.org/10.1364/ao.445806.
- IAEA, Muon Imaging, IAEA-TECDOC-2012, 2022.
- K. Morishima, et al., Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons, Nature 386 (390) (2017) 4-14. https://doi.org/10.1038/nature24647
- H.K.M. Tanaka, T. Kusagaya, H. Shinohara, Radiographic visualization of magma dynamics in an erupting volcano, Nat. Commun. 5 (2014) 3381, https://doi.org/10.1038/ncomms4381.
- L.W. Alvarez, et al., Search for hidden chambers in the pyramids, Science 167 (1970) 832-839 (1979). https://doi.org/10.1126/science.167.3919.832
- S. Procureur, et al., Precise characterization of a corridor-shaped structure in Khufu's Pyramid by observation of cosmic-ray muons, Nat. Commun. 14 (1) (Dec. 2023), https://doi.org/10.1038/s41467-023-36351-0.
- G. Saracino, et al., Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples), Sci. Rep. 7 (1) (Dec. 2017), https://doi.org/10.1038/s41598-017-01277-3.
- H.K.M. Tanaka, T. Kusagaya, H. Shinohara, Radiographic visualization of magma dynamics in an erupting volcano, Nat. Commun. 5 (2014) 3381, https://doi.org/10.1038/ncomms4381.
- H.K.M. Tanaka, Japanese volcanoes visualized with muography, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0142. Royal Society Publishing.
- N. Lesparre, D. Gibert, J. Marteau, D. Carbone, E. Galichet, Geophysical muon imaging: feasibility and limits, Geophys. J. Int. 183 (2010) 1348-1361. https://doi.org/10.1111/j.1365-246X.2010.04790.x
- W.C. Priedhorsky, et al., Detection of high-Z objects using multiple scattering of cosmic ray muons, Rev. Sci. Instrum. 74 (10) (2003) 4294-4297, https://doi.org/10.1063/1.1606536.
- L.J. Schultz, K.N. Borozdin, J.J. Gomez, G.E. Hogan, J.A. Mcgill, Image reconstruction and material Z discrimination via cosmic ray muon radiography, Nucl. Instrum. Methods Phys. Res. 519 (2004) 687-694. https://doi.org/10.1016/j.nima.2003.11.035
- S. Chatzidakis, C.K. Choi, L.H. Tsoukalas, Analysis of spent nuclear fuel imaging using multiple Coulomb scattering of cosmic muons, IEEE Trans. Nucl. Sci. 63 (6) (2016) 2866-2874. https://doi.org/10.1109/TNS.2016.2618009
- S. Chatzidakis, C.K. Choi, L.H. Tsoukalas, Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit, Nucl. Instrum. Methods Phys. Res. A 828 (2016) 37-45. https://doi.org/10.1016/j.nima.2016.03.084
- C. Thomay, J. Velthuis, T. Poffley, P. Baesso, D. Cussans, L. Frazao, Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography, J. Instrum. 11 (3) (2016).
- D. Poulson, J. Bacon, M. Durham, E. Guardincerri, C.L. Morris, H.R. Trellue, Application of muon tomography to fuel cask monitoring, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0052.
- J. Bae, S. Chatzidakis, Monitoring Spent Nuclear Fuel in a Dry Cask Using Momentum Integrated Muon Scattering Tomography, Transactions of American Nuclear Society, 2022.
- S. Procureur, et al., 3D imaging of a nuclear reactor using muography measurements, Sci. Adv. 9 (2023) [Online]. Available:.
- J. Perry, et al., Imaging a nuclear reactor using cosmic ray muons, J. Appl. Phys. 113 (18) (May 2013), https://doi.org/10.1063/1.4804660.
- D. Mahon, et al., First-of-a-kind muography for nuclear waste characterization, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0048.
- G. Yang, et al., Novel muon imaging techniques, Phil. Trans. Math. Phys. Eng. Sci. 377 (2137) (2019), https://doi.org/10.1098/rsta.2018.0062.
- K. Gnanvo, et al., Detection and Imaging of High-Z Materials with a Muon Tomography Station Using GEM Detectors, IEEE Nuclear Science Symposium & Medical Imaging Conference, 2010, pp. 552-559.
- V. Anghel, et al., Cosmic Ray Muon Tomography System Using Drift Chambers for the Detection of Special Nuclear Materials, IEEE NSS MIC, 2010, pp. 547-551.
- J. Bae, S. Chatzidakis, Momentum-dependent cosmic ray muon computed tomography using a fieldable muon spectrometer, Energies 15 (2666) (2022), https://doi.org/10.3390/en15072666.
- J. Bae, S. Chatzidakis, The Effect of Cosmic Ray Muon Momentum Measurement for Monitoring Shielded Special Nuclear Materials, INMM/ESARDA Joint Annual Meeting, 2021.
- S. Barnes, et al., Cosmic-ray tomography for border security, Instruments 7 (1) (Mar. 01, 2023), https://doi.org/10.3390/instruments7010013. MDPI.
- W. He, et al., Discrimination of high-Z materials in sealed containers with cosmic ray muons, J. Instrum. 13 (10) (Oct. 2018), https://doi.org/10.1088/1748-0221/13/10/P10017.
- S. Chatzidakis, et al., Exploring the use of muon momentum for detection of nuclear material within shielded spent nuclear fuel dry casks, American Nuclear Society Annual Meeting 116 (2017) 190-193.
- C. Morris, et al., Measuring Momentum for Charged Particle Tomography, US patent 7838841B2, 2010.
- S. Palestini, The muon spectrometer of the ATLAS experiment, Nucl. Phys. B 125 (2003) 337-345. https://doi.org/10.1016/S0920-5632(03)91013-9
- A.J. Stevens, et al., Direct momentum determination of a medium-energy particle beam using time-of-flight and range techniques, Nucl. Instrum. Methods 97 (1971) 1-4. https://doi.org/10.1016/0029-554X(71)90507-6
- V. Anghel, et al., A plastic scintillator-based muon tomography system with an integrated muon spectrometer, Nucl. Instrum. Methods Phys. Res. A 798 (2015) 12-23. https://doi.org/10.1016/j.nima.2015.06.054
- J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Sci. Rep. 12 (2559) (2022), https://doi.org/10.1038/s41598-022-06510-2.
- J. Bae, S. Chatzidakis, Fieldable muon momentum measurement using coupled pressurized gaseous Cherenkov detectors, Trans. Am. Nucl. Soc. 125 (1) (2021) 400-403. https://doi.org/10.1109/NSS/MIC44867.2021.9875534
- J. Bae, S. Chatzidakis, A Compact High-Resolution Muon Spectrometer Using Multi-Layer Gas Cherenkov Radiators, 2022.
- J. Bae, A Novel Muon Spectrometer Using Multi-Layer Pressurized Gas Cherenkov Radiators for Muon Tomography, 2022, https://doi.org/10.25394/PGS.19686633.v1.
- S. Chatzidakis, J. Bae, Advances in cosmic ray muon computed tomography and fieldable spectroscopy, HNPS Adv. Nucl. Phys. 28 (Oct. 2022) 184-190, https://doi.org/10.12681/hnps.3584.
- J. Bae, S. Chatzidakis, Development of compact muon spectrometer using multiple pressurized gas Cherenkov radiators, Results Phys. 39 (Aug. 2022), https://doi.org/10.1016/j.rinp.2022.105771.
- J. Bae, S. Chatzidakis, A Cosmic Ray Muon Spectrometer Using Pressurized Gaseous Cherenkov Radiators, IEEE Nuclear Science Symposium and Medical Imaging Conference, 2021.
- C.A. Ayre, J.M. Baxendale, C.J. Hume, B.C. Nandi, M.G. Thompson, M.R. Whalley, Precise measurement of the vertical muon spectrum in the range 20-500 GeV/c, J. Phys. G Nucl. Phys. 584 (1975) 584-600, https://doi.org/10.1088/0305-4616/1/5/010.
- O.C. Allkofer, K. Carstensen, W.D. Dau, Absolute cosmic ray muon spectrum at sea level, Phys. Lett. B 36 (425) (1971).
- L3 Collaboration, Measurement of the atmospheric muon spectrum from 20 to 3000 GeV, Phys. Lett. B 598 (15) (2004).
- S. Haino, et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer, Phys. Lett. B 594 (2004) 35-46. https://doi.org/10.1016/j.physletb.2004.05.019
- K.N. Borozdin, G.E. Hogan, C. Morris, C. William, A. Saunders, L.J. Schultz, Radiographic imaging with cosmic-ray muons, Nature 422 (277) (2003) 20-22. https://doi.org/10.1038/422020a
- Particle Data Group, Atomic and Nuclear Properties of Materials for More than 350 Materials, 2020. https://pdg.lbl.gov/2020/AtomicNuclearProperties/index.html.
- L.J. Schultz, et al., Statistical reconstruction for cosmic ray muon tomography, in: IEEE Transactions on Image Processing, 2007, pp. 1985-1993.
- M. Benettoni, et al., Noise reduction in muon tomography for detecting high density objects, J. Instrum. 8 (12) (2013), https://doi.org/10.1088/1748-0221/8/12/P12007.
- G. Wang, L.J. Schultz, J. Qi, S. Member, Bayesian image reconstruction for improving detection performance of muon tomography, in: IEEE Transactions on Image Processing, 2009, pp. 1080-1089.
- S. Chatzidakis, Z. Liu, J.P. Hayward, J.M. Scaglione, A generalized muon trajectory estimation algorithm with energy loss for application to muon tomography, J. Appl. Phys. 123 (2018), https://doi.org/10.1063/1.5024671.
- Z. Liu, S. Chatzidakis, J.M. Scaglione, C. Liao, H. Yang, J.P. Hayward, Muon tracing and image reconstruction algorithms for cosmic ray muon computed tomography, IEEE Trans. Image Process. 28 (1) (Jan. 2019) 426-435, https://doi.org/10.1109/TIP.2018.2869667.
- L. Schultz, et al., ML/EM reconstruction algorithm for cosmic ray muon tomography, in: IEEE Nuclear Science Symposium Conference Record, Institute of Electrical and Electronics Engineers Inc., 2006, pp. 2574-2577, https://doi.org/10.1109/NSSMIC.2006.354434.
- G.R. Lynch, O.I. Dahl, Approximations to multiple Coulomb scattering, Nucl. Instrum. Methods Phys. Res. 58 (7991) (1991) 6-10. https://doi.org/10.1016/0168-583X(91)95671-Y
- Y. Tsai, Pair production and bremsstrahlung of charged leptons, Rev. Mod. Phys. 46 (4) (1974) 815-851. https://doi.org/10.1103/RevModPhys.46.815
- P.A. Zyla, et al., The review of particle Physics (2020), Prog. Theor. Experiment. Phys. 8 (2020).
- G. Moliere, Theorie der Streuung schneller geladener teilchen II mehrfach-und vielfachstreuung, Z. Naturforsch. 3 (2) (1948) 78-97. https://doi.org/10.1515/zna-1948-0203
- H.A. Bethe, Moliere's theory of multiple scattering, Phys. Rev. 89 (6) (1953) 1256-1266. https://doi.org/10.1103/PhysRev.89.1256
- M.A. Meyer, Multiple Coulomb scattering from finite nuclei, Nucl. Phys. 28 (1961) 512-518. https://doi.org/10.1016/0029-5582(61)90042-6
- L.A. Kulchitsky, G.D. Latyshev, The multiple scattering of fast electrons, Phys. Rev. 61 (1942).
- Geant4 Collaboration, Phys. Ref. Manual (Release 10 (4) (2017).
- S. Agostinelli, et al., GEANT4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res. 506 (3) (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
- E. Rutherford, The scattering of α and β particles by matter and the structure of the atom, Philosoph.Magaz. J. Sci. 21 (125) (1911).
- J.R. Greis, Multiple Coulomb Scattering of Muons in MICE, University of Warwick, 2017.