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A B S T R A C T   

The setpoint of the reactor trip system shall be set to consider the measurement uncertainty of the instrument 
channel and provide a reasonable and sufficient margin between the analytical limit and the trip setpoint. 

A comparative analysis was conducted to find out an appropriate uncertainty combination method through an 
example problem. The four methods were evaluated; 1) ISA-67.04.01 method, 2) the GUM95 method, 3) the 
modified GUM method developed by Fotowicz, and 4) the modified IEC61888 method proposed by authors for 
the pressure instrument channel presented in ISA-RP67.04.02 example. The appropriateness of each method was 
validated by comparing it with the result of Monte Carlo simulation. 

As a result of the evaluation, all methods are appropriate when all measurement uncertainty elements are 
normally distributed as expected. But ISA-67.04 method and GUM95 method overestimated the channel un-
certainty if there is a dominant input element with rectangular distribution among the uncertainty input 
elements. 

Modified GUM95 methods developed by Fotowicz and modified IEC61888 method by authors are able to 
produce almost the same level of channel uncertainty as the Monte Carlo method, even when there is a dominant 
rectangular distribution among the uncertainty components, without computer-assisted simulations.   

1. Introduction 

The reactor trip system of a nuclear power plant has trip setpoints 
that trigger the automatic reactor trip when the plant is in an abnormal 
state. The setpoint of the reactor trip system shall be set to consider the 
measurement uncertainty of the instrument channel and provides a 
sufficient margin between the analytical limit and the trip setpoint. 
However, if the trip setpoint is set too conservatively it can reduce safety 
and operability by initiating an unnecessary reactor trip or limiting plant 
operation. Therefore, the trip setpoint is set considering the measure-
ment uncertainty of the instrument channel appropriately. 

The current uncertainty for the reactor trip system setpoints in nu-
clear power plants complies with the uncertainty combination meth-
odology of IEC 61888 [1] and ISA67.04–01 [2]. The uncertainty 
evaluation for calibration of instruments important to the reactor trip 
system of nuclear power plants secures traceability through a calibration 
certificate, in which the calibration certification authorities use the 
method of GUM95 [3]. 

The National Metrology Institute ensures equivalence and 

traceability of international measurement standards under the Interna-
tional Metrology Commission Mutual Recognition Convention (CIPM 
MRA), mutually recognizes measurement results in international trade, 
and the calibration certification body applies the International Labora-
tory Accreditation Cooperation (ILAC) calibration uncertainty policy 
[4], ISO/IEC 17025 [5] and IEC 115 [6]. 

Generally, it is known that the uncertainty combination methods in 
IEC 61888, ISA67.04–01, and GUM95 result in accurate channel un-
certainty if all input elements have a normal distribution, but do not 
result in accurate uncertainty for the non-normal distribution. GUM95 
suggested that Monte Carlo Method should be used if the uncertainty of 
the non-normal distribution is large compared with that of the normal 
distribution [3]. Fotowicz suggested a modified k-factors to overcome 
the over-estimation of GUM95 when combining rectangular distribu-
tions with large standard deviation compared to that of the normal 
distributions [9]. Moszczynsky et al. used the convolution method to 
find the combined distribution of a rectangular distribution and a 
normal distribution and calculated the k factor using an excel sheet. This 
method was verified by the use of MCM [10]. Dietrich also showed the 
combined distribution of a rectangular distribution and a normal 
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distribution using convolution technique which is an analytical method 
[16]. 

To calculate the uncertainty of the system, the information on the 
probability distribution functions (pdfs), means, and standard de-
viations of the input elements are required. This information is usually 
provided by the manufactures. But for some input elements only upper 
and lower limits are given instead of the pdfs. For this case pdf should be 
determined based on the information given. If the only information 
provided is the upper and lower limits, it is proved that the uniform 
distribution is the most appropriate distribution by the principle of 
maximum entropy [7,8]. GUM95 also states that a rectangular distri-
bution can be used as a probability density function if useful information 
for the input term is given only upper and lower limits [3]. Drift can be a 
possible example. As the number of years of operation of nuclear power 
plants has increased, drift data from safety system instruments has been 
accumulated, and there has been a movement in the industry to use this 
95/95 drift value to calculate setpoints, and revisions to regulatory 
documents to reflect this are also in progress [12]. Appendix A provides 
how rectangular distribution is developed by the principle of maximum 
entropy [7] where the only information given is the upper and lower 
limit. 

The analytic convolution of normal distribution and rectangular 
distribution is not easy for hand calculation and some methods have 
been proposed to resolve this difficulty [9–11]. 

In this paper, the modified IEC61888 method is proposed and eval-
uated with the four methods presented in References 1, 2, 3, and 9. The 
measurement uncertainty of the instrument channel was calculated 
through example, and then the Monte Carlo method verified the selected 
methods which one among them is acceptable. 

2. Uncertainty evaluation method 

2.1. Method used in nuclear power plant 

The method of calculating the uncertainty of the instrument channel 
used in the nuclear power plant is described in References [1,2]. The trip 
system setpoints for nuclear power plants were evaluated in accordance 
with the methodology of IEC 61888 [1]. In this methodology, uncer-
tainty is combined by the SRSS (Square Root of Sum of Square) term for 
elements with normal uncertainty, and the elements with non-normal 
distribution are arithmetically combined to the SRSS term. In other 
words, the combining formula for uncertainty is represented by Eq. (1). 

CU61888 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
A2 + B2

)√

+ C
= (A,B)SRSS + C

where (A,B)SRSS ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
A2 + B2

)√
(Eq. 1) 

CU61888 is the channel uncertainty, and the sign of CU is ± . A and B 
are the uncertainty of the input elements constituting the channel un-
certainty, which is random, independent, and has the characteristics of a 

normal distribution. Bias or dependent uncertainty is expressed as C. 
However, in Eq. (1), it is unclear how to deal with the uncertainty of the 
input element that is random and independent but does not have the 
characteristics of a normal distribution (e.g., a rectangular distribution). 

To clear this ambiguity, ISA 67.04.01 [2], which was endorsed by U. 
S.NRC through RG 1.105 [12], further subdivided term C of Eq. (1) to 
reflect non-normal distributions as terms F, L, and M in Eq. (2). 

CU67.04 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 + B2 + C2 + (D+ E)2
√

+ |F| + L − M
= (A,B,C, (D+ E) )SRSS + |F| + L − M

where (A,B,C, (D+ E) )SRSS ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 + B2 + C2 + (D+ E)2
√ (Eq. 2)  

and where CU67.04 is the channel uncertainty, where the sign of CU is ±. 

A, B, C = random, independent, and approximately normally 
distributed terms 
D and E = random dependent uncertainty terms that are independent 
of terms A, B, and C 
F = non-normally distributed uncertainties and/or biases (unknown 
sign) 
L & M = biases with the known sign 

It is important to note that, unlike GUM95, the value of each term in 
Eq. (2) is not a standard uncertainty, but an uncertainty value with 95 % 
of confidence level. This means that a coverage factor in GUM95 is re-
flected on each element in SRSS term and F term separately. 

2.2. GUM95 methodology 

The methodology described in ‘Guide to the expression of Uncer-
tainty in Measurement (GUM95)’ can be summarized in the following 
major steps. 

2.2.1. Estimation of uncertainty of input elements 
This step estimates the uncertainty for all input elements. According 

to GUM95, uncertainty can be basically classified into two types: Type A 
and Type B uncertainty. Type A uncertainty is an uncertainty that deals 
with the source of uncertainty from the standard deviation obtained by 
repeated measurements, and estimated as the standard deviation of a 
mean obtained from repeated measurements. Type B uncertainty is an 
uncertainty determined from other sources of information, based on 
careful analysis through observation or accurate scientific judgment 
using all available information about the measurement procedure. 

2.2.2. Combined standard uncertainty 
The GUM95 uncertainty framework is a widely used method for 

evaluating the uncertainty of a measurement. It is based on the law of 
propagation of uncertainty (LPU), which states that the uncertainty of a 
measurement can be determined by analyzing the uncertainties of the 
individual inputs that contribute to the measurement. 

To calculate the combined standard uncertainty, the GUM95 
framework extends the measurement model to the Taylor series and 
simplifies the expression by considering only the first-order term. This 
approximation is valid because the uncertainty is typically a small value 
compared to the measurement. 

In this way, a model in which the measured value, y, is expressed as a 
function of N variables, x1, ..., xN, can be represented by the following 
general expression for the propagation of uncertainty: 

y= f (x1,…, xN) (Eq. 3)  

u2
c =

∑N

i=1

(
∂f
∂xi

)2

u2
xi
+ 2

∑N− 1

i=1

∑N

j=i+1

(
∂f
∂xi

)(
∂f
∂xj

)

cov
(
xi, xj

)
(Eq. 4)  

where, uc is the combined standard uncertainty of measurand y, and xi is 

Nomenclature 

CLT Central Limit Theorem 
DR Drift 
EE Environmental Effect 
MTE Measurement and Test Equipment 
NPP Nuclear Power Plant 
PS Power Supply 
RA Reference Accuracy 
SRSS Square Root of the Sum of the Squares 
TE Temperature Effect  
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the uncertainty of the ith input element. If no correlation exists between 
input elements, the second term in Eq. (4) is deleted as shown Eq. (5). 

u2
c =

∑N

i=1

(
∂f
∂xi

)2

u2
xi

(Eq. 5) 

If the measurand y is linear to the input element xi, such as y = x1+

x2 +…+ xN and, the combined uncertainty uc for the measurand y can 
be expressed as Eq. (6). 

uc=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

x1
+ u2

x2
+ ...+ u2

xN

√
(Eq. 6)  

2.2.3. Estimation of a coverage factor 
The value calculated by Eq. (6) corresponds to one standard devia-

tion (inclusive rate of about 68.2 %) interval value. To obtain the con-
fidence level we want, we assume that the GUM95 method follows 
Student’s t-distribution. The effective degree of freedom veff for t-dis-
tribution can be calculated using the Welch-Satterthwaite formula. 

veff =
u4

y

∑N

i=1

u4
xi

vxi

(Eq. 7)  

where vxi is the degree of freedom for the ith input element. The coverage 
factor (kp) corresponding veff can be found in Table G.2 of GUM95 [3]. 
Usually, a coverage factor value corresponding to 95 % of the confidence 
level is used. 

2.2.4. Expanded uncertainty 
Expanded uncertainty Up can be obtained by multiplying the 

coverage factor kp to the combined standard uncertainty uc. It has the 
sign ±. 

Up= kp⋅uc (Eq. 8) 

The GUM95 method is based on the central limit theorem (CLT). 
When a large number of distributions are combined, the resultant dis-
tribution approximately follows a normal distribution. If the distribution 
of input element is asymmetric or one or more input elements which are 
not normally distributed have significantly larger standard deviations 
than other input elements, CLT may not be applicable. In addition, the 
GUM95 method is not appropriate for the nonlinear model. And the 
effectiveness of the Welch-Satterthwaite formula which is used to 
calculate the effective degree of freedom of mixture of Type A data and 
Type B data is still controversial [14]. In this case, it is recommended 
using the Monte Carlo method as an alternative. 

2.3. Fotowicz methodology 

The GUM95 method may not be valid as mentioned above if one or 
more input elements have a significantly large value than the other input 
elements, which are non-normally distributed. Fotowicz proposed a 
method to obtain the coverage factor, especially when the distribution of 
input elements with large values is rectangular distribution [9]. The 
method proposed by Fotowicz is as follows. 

2.3.1. Combined standard uncertainty 
The combined standard uncertainty is obtained as the same way of 

the GUM95 [3] method, SRSS by Eq. (6). 

2.3.2. Parameter ru 
Fotowicz introduced the parameter ru to reflect the influence of the 

input element having a rectangular distribution. 

ru =
|uk(y)|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

c(y) − u2
k(y)

√ (Eq. 9)  

where uk(y) is the largest contribution of the input quantity having a 

rectangular distribution. 

2.3.3. Coverage factor kRN 
Coverage factor kRN depends on ru value. The detail information on ru 

and kRN can be found in Ref. [9]. The coverage factor kRN is value cor-
responding to 95 % of the confidence level of uncertainty. 

2.3.4. Expanded uncertainty 
Expanded uncertainty can be obtained by multiplying the coverage 

factor kRN to the combined standard uncertainty. 

Up= kRN ⋅uc (Eq. 10)  

2.4. Modified IEC61888 method 

To overcome the deficiency of IEC61888 method which results in the 
conservative result when the non-normally distributed inputs exist, we 
proposed a modified form of the uncertainty combination method used 
in IEC61888 as follows: 

CUM− 61888 = λ⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2 + B2 + C2 + (D+ E)2 +
∑N

i=1
Fi

2

√
√
√
√

= λ⋅

(

A,B,C, (D+ E),
∑N

i=1
Fi

)

SRSS

(Eq. 11)   

where λ = compensation factor which considers the contribution of 
the rectangular distribution and depends on rRN 
rRN = ratio of uncertainties of rectangular distributions to those of 
normal distributions 

rRN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
Fi

2

A2 + B2 + C2 + (D+ E)2

√
√
√
√
√

(Eq. 12)  

where Fi = rectangularly distributed uncertainty with the confidence 
level of 95 % 

Other terms are same as defined in Eq. (2). 
The compensation factor λ is given Table 1 and can be illustrated as 

Fig. 1. This λ value is obtained by comparing the uncertainty value 
calculated by Eq. (11) with the value obtained by Monte Carlo 
simulation. 

3. Example problem and uncertainty data 

The example problem used in this paper is taken from Annex L of ISA- 
RP67.04.02–2010 [15], which aims to be familiar to nuclear power 
plant (NPP) industry users through a sample uncertainty calculation of 
NPP trip setpoint. The example channel consists of two modules. Module 
1 is a pressure transmitter, and Module 2 is a bistable. A power supply is 
common to Module 1 and Module 2. 

Table 1 
Compensation factor λ.  

rRN up to value λ rRN up to value λ rRN up to value λ 

0.06 1.00 0.6 1.05 3.4 1.04 
0.2 1.01 0.8 1.06 4.0 1.03 
0.3 1.02 1.7 1.07 5.4 1.02 
0.4 1.03 2.2 1.06 10.0 1.01 
0.5 1.04 2.6 1.05 ∞ 1.00  
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3.1. Example problem 

High pressure trip of the containment building triggers one of several 
inputs of the steam isolation logic in mitigation for a high energy pipe 
break accident. 

3.2. Uncertainty data 

The uncertainty for each input element used in the example problem 
is summarized in Table 2. The standard uncertainty was obtained by 
dividing the uncertainty value in Table 2 by the coverage factor of 1.96 
which corresponds to the 95 % confidence level of normal distribution. 
If the distribution is a rectangular one, the standard uncertainty was 
obtained by dividing a semi-range by 

̅̅̅̅
3
√

. 
Channel uncertainties were calculated using different methods for 

the following three cases. 

Case 1: All input elements have normal distributions, 
Case 2: EE1, DR1, and DR2 have rectangular distributions and the 
others have normal distributions, 
Case 3: EE1, DR1, and DR2 have rectangular distributions and the 
others have normal distributions. The magnitude of EE1 is reduced to 
moderate value, i.e., 0.5 (1/10 of the original value). 

4. Evaluation of uncertainty 

4.1. Case 1: all input elements have normal distributions 

4.1.1. ISA67.04 (IEC 61888) method 
Uncertainty is obtained for module 1 and module 2, respectively, by 

the SRSS method, and the channel uncertainty is the combination of 
uncertainties of module 1 and module 2. The uncertainty of module 1 

and module 2 can be calculated as follows. The unit of pressure uncer-
tainty in ISA RP 67.04.02 [15] is psi. 

e1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

RA2
1 + DR2

1

̅̅̅̅→←̅̅̅̅
+ EE2

1

̅̅̅ →←̅̅̅
+ PS2

1 +MTE2
1

√

=
(

0.750, 0.200
̅̅→←̅̅

, 5.0
̅→←̅

, 0.015, 0.375
)

SRSS

≅ 5.0738  

e2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

RA2
2 + DR2

2

̅̅̅̅→←̅̅̅̅
+ TE2

2 + PS2
2 +MTE2

2

√

=
(

0.1875, 0.3750
̅̅̅→←̅̅̅

, 0.0075, 0.0150, 0.3750
)

SRSS

≅ 0.5627 

The channel uncertainty CU is 

CU67.04 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2
1 + e2

2

√

= (5.0738, 0.5627)SRSS ≅ 5.1049  

4.1.2. GUM95 method 
The combined standard uncertainty is calculated. 

uc =
(

RASD
1 , DRSD

1

̅̅̅̅̅→←̅̅̅̅̅
, EESD

1

̅̅̅̅→←̅̅̅̅
, ... , TESD

2 , PSSD
2 , MTESD

2

)

SRSS

=
(

0.383, 0.102
̅̅→←̅̅

, 2.551
̅̅→←̅̅

, ... , 0.0038, 0.0077, 0.1913
)

SRSS

≅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6.7836
√

≅ 2.6045  

where XSD is the standard deviation of input element X. 
Effective degree of freedom can be calculated using Eq. (7). Since uxi 

is a Type B uncertainty with known probability distribution, vxi is ∞, and 
accordingly, veff is infinity. In Table G.2 of GUM95 [3], where veff =∞, 
the coverage factor kp corresponding to the 95 % of confidence level is 
1.96. i.e., kp = 1.96. Expanded uncertainty Up, can be obtained as Up =

kpuc(y); 

Up− GUM95 = (1.96)⋅(2.6045) ≅ 5.1049 

This result is the same as the value calculated in 4.1.1. 

4.1.3. Fotowicz method 
Since the method of obtaining the combined standard uncertainty uc 

is the same as the GUM95 method, uc = 2.6. Since there is no rectangular 
distribution, ru = 0 from Eq. (9), and kRN = 1.96 for ru = 0 in Table 1 of 
Fotowicz [9]. 

Expanded uncertainty Up = kRN uc(y)p is  

Fig. 1. Compensation factor λ.  

Table 2 
Uncertainty and probability density function for each input element.  

Input 
element 

Case 1 Case 2 Case 3 

Uncertainty Distributiona Standard 
Uncertainty 

Uncertainty/ 
Semi-rangeb 

Distributiona Standard 
Uncertainty 

Uncertainty/ 
Semi-rangeb 

Distributiona Standard 
Uncertainty 

Module 1 
RA1 0.75 N 0.3827 0.75 N 0.3827 0.75 N 0.3827 
DR1 0.2 N 0.1020 0.2 R 0.1155 0.2 R 0.1155 
EE1 5.0 N 2.5510 5.0 R 2.8868 0.5 R 0.2887 
PS1 0.015 N 0.0077 0.015 N 0.0077 0.015 N 0.0077 
MTE1 0.375 N 0.1913 0.375 N 0.1913 0.375 N 0.1913 
Module 2 
RA2 0.1875 N 0.0957 0.1875 N 0.0957 0.1875 N 0.0957 
DR2 0.375 N 0.1913 0.375 R 0.2165 0.375 R 0.2165 
TE2 0.0075 N 0.0038 0.0075 N 0.0038 0.0075 N 0.0038 
PS2 0.015 N 0.0077 0.015 N 0.0077 0.015 N 0.0077 
MTE2 0.375 N 0.1913 0.375 N 0.1913 0.375 N 0.1913  

a N: Normal distribution, R: Rectangular Distribution. 
b If the distribution is a rectangular one, then the value corresponds to the semi-range. 
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Up− Fotowicz = (1.96)⋅(2.6045) ≅ 5.1049  

4.1.4. Modified IEC61888 method 
Uncertainty was obtained by the SRSS method, and the channel 

uncertainty is obtained by multiplying λ to the uncertainty obtained by 
the SRSS method. For this case, rRN = 0 and corresponding λ is 1 from 
Table 1. 

CUM− 61888 = λ⋅
(

RA1, DR1
̅̅ →←̅̅

, EE1
̅̅→←̅̅

, ... ,TE2,PS2,MTE2

)

SRSS

= 1.0⋅
(

0.75, 0.2
̅→←̅

, 5.0
̅→←̅

, ..., 0.0075, 0.015, 0.375
)

SRSS
≅ 5.1049 

Results are summarized in Table 3. As shown in Table 3, when the 
distribution of input elements is normal distribution, all methods give 
the same results. 

4.2. Case 2: rectangular and normal distribution 

EE1, DR1, and DR2 have rectangular distributions and the others have 
normal distributions. 

4.2.1. ISA67.04 method 
Since EE1, DR1, and DR2 are not normal distributions (i.e., rectan-

gular distribution), according to Eq. (2), the uncertainty of module 1 and 
module 2 can be calculated as follows: 

e1 = (RA1,PS1,MTE1)SRSS +

⃒
⃒
⃒DR1
̅̅ →←̅̅

+ EE1
̅̅→←̅̅ ⃒⃒

⃒

= ( 0.750, 0.015, 0.375)SRSS +

⃒
⃒
⃒0.20
̅→←̅

+ 5.0
̅→←̅ ⃒⃒

⃒ ≅ 6.0387

e2 = (RA2, TE2,PS2,MTE2 )SRSS +

⃒
⃒
⃒DR2
̅̅ →←̅̅ ⃒

⃒
⃒

= ( 0.1875, 0.0075, 0.015, 0.375)SRSS +

⃒
⃒
⃒0.375
̅̅→←̅̅ ⃒

⃒
⃒ ≅ 0.7946 

Channel uncertainty CU is 

CU67.04 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2
1 + e2

2

√

= (6.0387, 0.7946)SRSS ≅ 6.0907  

4.2.2. GUM95 method 
The combined standard uncertainty uc is calculated. 

uc =
(

RASD
1 , DRSD

1

̅̅̅̅̅→←̅̅̅̅̅
, EESD

1

̅̅̅̅→←̅̅̅̅
, ...,TESD

2 ,PSSD
2 ,MTESD

2

)

SRSS

=
(

0.3827, 0.1157
̅̅̅→←̅̅̅

, 2.8868
̅̅̅→←̅̅̅

, ..., 0.0038, 0.0077, 0.1913
)

SRSS

≅ 2.9364 

The coverage factor kp = tp(veff ) = 1.96 as in section 4.1.2 and the 
expanded uncertainty Up is 

Up− GUM95 = kpuc(y) = (1.96)⋅(2.9364) ≅ 5.7553  

4.2.3. Fotowicz method 
Since the method to get the combined standard uncertainty uc is 

same as GUM95 method, we can get uc = 2.9364. 
Using Eq. (9) we can get ru. 

ru =
|ui(y)|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

c(y) − u2
i (y)

√

=
|2.8868|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2.9364)2 − (2.8868)2
√ = 5.3715  

And from Table 1 of Reference 9 we can get kRN = 1.68 where ru =

5.3715. 
The expanded uncertainty Up is 

Up Fotowicz= kRNuc(y) = (1.68)⋅(2.9364) = 4.9332  

4.2.4. Modified IEC61888 method 
Uncertainty was obtained by the SRSS method, and the channel 

uncertainty is obtained by multiplying λ to the uncertainty obtained by 
the SRSS method. 

For this case, rRN = 5.08 and corresponding λ is 1.02 from Table 1. 

CUM− 61888 = λ⋅
(

RA1, DR1
̅̅ →←̅̅

, EE1
̅̅→←̅̅

, ... ,TE2,PS2,MTE2

)

SRSS

= 1.02⋅
(

0.75,
(

0.95⋅0.2
̅̅̅̅̅→←̅̅̅̅̅ )

,
(

0.95⋅5
̅̅̅→←̅̅̅ )

, ... , 0.0075, 0.015, 0.375
)

SRSS
≅ 4.9557 

Results are summarized in Table 3. The ISA67.04 and GUM95 
method show the larger uncertainty than the other two methods in Case 
2. 

4.3. Case 3: rectangular (0.1 times of EE1) and normal distribution 

EE1, DR1, and DR2 have rectangular distributions and the others have 
normal distributions. The magnitude of EE1 is reduced to 0.5 (1/10 of 
Case 2). 

4.3.1. ISA67.04 method 
Since EE1, DR1, and DR2 are not normal distributions, according to 

Eq. (2), the uncertainty of module 1 and module 2 can be calculated as 
follows. 

e1 = (RA1,PS1, MTE1)SRSS +

⃒
⃒
⃒DR1
̅̅ →←̅̅

+ EE1
̅̅→←̅̅ ⃒⃒

⃒

= ( 0.750, 0.015, 0.375)SRSS +

⃒
⃒
⃒0.20
̅→←̅

+ 0.5
̅→←̅ ⃒⃒

⃒ ≅ 1.5387  

e2 = (RA2, TE2,PS2,MTE2 )SRSS +

⃒
⃒
⃒DR2
̅̅ →←̅̅ ⃒

⃒
⃒

= ( 0.1875, 0.0075, 0.015, 0.375)SRSS +

⃒
⃒
⃒0.375
̅̅→←̅̅ ⃒

⃒
⃒ ≅ 0.7946 

Channel uncertainty CU is 

CU67.04 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

e2
1 + e2

2

√

= (1.5387, 0.7946)SRSS = 1.7317  

4.3.2. GUM95 method 
The combined standard uncertainty uc is calculated. 

uc =
(

RASD
1 , DR
̅→←̅ SD

1 , EE
̅→←̅ SD

1 , ... ,TESD
2 ,PSSD

2 ,MTESD
2

)

SRSS

=
(

0.3827, 0.1155
̅̅̅→←̅̅̅

, 0.2887
̅̅̅→←̅̅̅

, ... , 0.0038, 0.0077, 0.1913
)

SRSS

≅ 0.6103 

The coverage factor kp = tp(veff ) = 1.96 as in section 4.1.2 and the 
expanded uncertainty Up is 

Up GUM95 = kpuc(y) = (1.96)⋅(0.6103) = 1.1962  

4.3.3. Fotowicz method 
Since the method to get the combined standard uncertainty uc is 

same as GUM95 method, we can get uc = 0.6103. 
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Using Eq. (9) we can get ru. 

ru =
|ui(y)|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

c(y) − u2
i (y)

√

=
|0.2887|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(0.6103)2 − (0.2887)2
√ ≅ 0.5369 

And from Table 1 of Reference 9 we can get kRN = 1.96 where ru =

0.5369. 
The expanded uncertainty Up is 

Up− Fotowicz = kRNuc(y) = (1.96)⋅(0.6103) = 1.1962  

4.3.4. Modified IEC61888 method 
Uncertainty was obtained by the SRSS method, and the channel 

uncertainty is obtained by multiplying λ to the uncertainty obtained by 
the SRSS method. 

For this case, rRN≅ 0.66 and corresponding λ is 1.06 from Table 1. 

CUM− 61888 =λ⋅
(

RA1,DR
̅→←̅

1, EE
̅→←̅

1, ...,TE2,PS2,MTE2

)

SRSS

=1.06⋅
(

0.75,
(

0.95⋅0.2
̅̅̅̅̅→←̅̅̅̅̅ )

,
(

0.95⋅0.5
̅̅̅̅̅→←̅̅̅̅̅ )

, ...,0.0075,0.015,0.375
)

SRSS
≅1.1936 

Results are summarized in Table 3. The ISA67.04 method showed the 
largest uncertainty. The other methods show similar uncertainty values 
in Case 3. 

5. Monte Carlo simulation 

For the example in ISA-RP67.04.02, as shown in Table 3, the com-
bined channel uncertainties are quite different. Therefore, Monte Carlo 
method was used to determine which method was most practical, that is, 
more applicable to the industry. In the calculation of combined uncer-
tainty by error propagation (e.g., SRSS), the mean and the standard 
deviation those are the primary moment and the secondary moment, 
respectively, are conserved, but the probability density function (pdf) is 
unknown, whereas Monte Carlo simulation propagates the probability 
density function of the input elements, so we can obtain both a pdf of 
measurand y and the realistic combined uncertainty. The relationship 
between the measurand Y and the input elements xi is as follows: 

Y=RA1 + DR1 + EE1 + PS1 +MTE1 + RA2 + DR2 + TE2 + PS2 +MTE2

(Eq. 13) 

The mean of each input element is zero. 
Monte Carlo simulation was performed using program written in Py-

thon language. Sampling was done using normal distribution function and 
rectangular distribution function in Python. The number of trials requires 
more than 200,000 times to maintain 95 % of confidence level (p = 0.95) 
in Eq. (14), so 106 trials were performed for this calculation [13]. 

N ≥
104

1 − p
(Eq. 14) 

For Case 2, as a result of Monte Carlo simulation, the mean was 
evaluated as − 0.0054 and the standard deviation was 2.9360. The 
percentage of samples outside the two standard deviations was calcu-
lated as 0.2 %, which means that the probability density function of the 
measurand is not a normal distribution as shown in Fig. 2. The uncer-
tainty of the 95 % of confidence level was 4.932, and the coverage factor 
at this point was calculated as 1.680. The shape of probability density 
function shows the characteristics of the rectangular distribution rather 
than the normal distribution. This is because EE1 which has significantly 
large uncertainty and assumed to be the rectangular distribution 
compared to the other input elements. 

Fig. 2. Probability density function for Case 2 and Case 3.  

Table 3 
The channel uncertainty.  

Evaluation method Channel Uncertainty 

Case 1 Case 2 Case 3 

ISA67.04.01 Method 5.105 6.091 1.732 
GUM95 Method 5.105 5.755 1.196 
Fotowicz Method 5.105 4.933 1.196 
Modified IEC61888 Method 5.105 4.955 1.194  

Table 4 
Results of channel uncertainty compared with Monte Carlo simulation.  

Evaluation Method Channel Uncertainty 

Case 1 (All normal Distributions) Case 2 (Normal + Large Rectangular Distribution) Case 3 (Normal + Small Rectangular Distribution) 

ISA67.04 Method 5.105a 6.091 (23.7 %)b 1.7317 (45.5 %) 
GUM95 Method 5.105 5.755 (16.7 %) 1.1962 (0.5 %) 
Fotowicz Method 5.105 4.933 (0.0 %) 1.1962 (0.5 %) 
Modified IEC61888 Method 5.105 4.955 (0.5 %) 1.1936 (0.3 %) 
Monte Carlo Simulation – 4.932 1.1903  

a Same as IEC 61888 result, all input element has normal distribution. 
b Value in the parenthesis is percentage of difference compared with MCM result. 
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For Case 3, the mean was 0.0001 and the standard deviation was 
0.611. The percentage of samples outside the two standard deviations 
was 4.4 %, and the uncertainty at 95 % confidence level was 1.190 and 
the coverage factor k was 1.951 which is similar to that of the normal 
distribution 1.96. Also, the probability density function looks like the 
normal distribution as shown in Fig. 2 (Case 3). 

6. Results and discussion 

For examples of pressure measuring devices shown in ISA- 
RP67.04.02, channel uncertainty was evaluated using IEC61888 
(including ISA67.04.01), the GUM95 method recommended by BIMP, 
and the method proposed by P. Fotowicz. Case 1 assumed the normal 
distributions for all the input elements shown in ISA-RP67.04.02 
example and channel uncertainty were evaluated for the different 
methods. As in Table 4, all methods showed the same results. If all input 
elements follow a normal distribution, the resultant distribution be-
comes a normal distribution. The combined uncertainty can be obtained 
by the SRSS method and the coverage factor at the 95 % confidence level 
is 1.96 for the normal distributions. 

In Case 2, it assumed that three rectangular distributions for the 
input elements; one is environmental effect, EE1 which has the largest 
uncertainty; two rectangular ones are the drifts, i.e., DR1 and DR2. The 
remaining distributions are assumed normal distribution. Only ISA67.04 
method describes the special input elements which are not random and 
non-normally distributed elements, it treats them not in SRSS operation, 
but in algebraic sum operation. ISA67.04 method gives a largest un-
certainty of 6.091 among that of the other methods; GUM95 method 
does 5.755. Since there is no analytical method for combining normal 
and rectangular distributions, Fotowicz proposed an approximation 
formula and provided a coverage factor table for R–N distribution. It 
gives the uncertainty of 4.933 while Monte Carlo method does that of 
4.932; the modified IEC61888 method by authors does that of 4.933. 
The results show very large deviation depending on the method used to 
evaluate the channel uncertainty for Case 2. 

In Case 3, the largest rectangular distribution only reduced to the one- 
tenth of EE1 of the Case 2. The other two rectangular distributions and 
normal distributions remained the same as Case 2. Still ISA67.04 method 
gives a large uncertainty and other three methods do similar results. 

GUM95 Supplement 1 [13] recommends Monte Carlo Simulation as 
an alternative to the SRSS method, where assumptions for the GUM95 
are not applicable. Although Monte Carlo Method (MCM) gives accurate 
results, it needs computer programming. As a result of MCM, the channel 
uncertainty was evaluated as 4.932 and 1.1903 on both Case 2 and Case 
3 in Table 5. MCM is not needed for Case 1 because the combined dis-
tribution is obviously normal. 

Since channel uncertainty obtained by MCM can be interpreted 
realistic, ISA67.04 method is the most conservative and overestimates 
by 23.7 % for Case 2 and by 45.5 % for Case 3 compared with MCM. 
GUM95 method is less conservative than the ISA67.04 method, but still 
overestimate 16.7 % than the MCM for Case 2. 

The Fotowicz method and the modified IEC61888 method by authors 
give similar results as the Monte Carlo method. These two methods can 
calculate channel uncertainty easily without help of computer pro-
gramming, regardless of the presence of input elements with rectangular 
distribution. 

Reference 13 provides a procedure to validate the result calculated 
by the GUM95 method with the Monte Carlo method. First, dlow and 
dhigh are calculated using Eq. (15) and Eq. (16). 

dlow = |y − U(y) − ylow| (Eq. 15)  

dhigh =
⃒
⃒y+U(y) − yhigh

⃒
⃒ (Eq. 16) 

Where, y is the expected value of the object to be measured, U(y) is 
the channel uncertainty calculated by other methods, and ylow and yhigh 
are 2.5 % and 97.5 % values calculated by Monte Carlo simulation. 

The numerical tolerance of the uncertainty, or the standard devia-
tion, can be obtained by expressing the standard uncertainty as c x 10l, 
where c is an integer with a number of digits equal to the number of 
significant digits of the standard uncertainty and l is an integer. Then the 
numerical tolerance δ is expressed as: 

δ=
1
2

10l (Eq. 17) 

If dlow and dhigh both are less than the numerical tolerance, then the 
result is validated and accepted. Otherwise, it is determined not vali-
dated. We have taken two significant digits from the standard uncer-
tainty and the numerical tolerances turn out to be 0.05 and 0.005 for the 
Case 2 and Case 3, respectively. 

The validity of various methods is summarized in Table 4. For Case 2 
y = 0, ylow = − 4.932 and yhigh = 4.932 and y = 0, ylow = − 1.190 and 
yhigh = 1.190 for Case 3 from Monte Carlo simulation. 

7. Conclusions 

The reactor trip system of a nuclear power plant has trip setpoints 
that trigger the automatic reactor trip when the plant is in an abnormal 
state. The setpoint of the reactor trip system shall be set to consider the 
measurement uncertainty of the instrument channel and provides a 
reasonable margin between the analytical limit and the trip setpoint. 

Channel uncertainty was evaluated for the pressure measurement in 
ISA-RP67.04.02 example by 1) ISA67.04 method, 2) GUM95 method 
recommended by BIMP, 3) Fotowicz method to consider the large 
rectangular distribution, and 4) IEC61888 method modified in this 
study. 

The ISA67.04 method estimates the channel uncertainty appropri-
ately when all input elements have normal distributions, but signifi-
cantly overestimates the channel uncertainty when the uncertainty of 
element with rectangular distributions is much greater than that of el-
ements with normal distributions. So ISA67.04 method is not recom-
mended to use where the dominant input element has the rectangular 
distribution. 

The GUM95 method also estimates the channel uncertainty appro-
priately when all input elements have normal distributions, but over-
estimates the channel uncertainty like ISA67.04.01 method when the 
uncertainty of element with rectangular distribution is dominant among 
the input elements. For this case, Fotowicz method with the modified 
coverage factor is one of the choices. 

Existing methods give too conservative channel uncertainty when 
there are input elements with non-normal distributions. The proposed 
method (modified IEC61888 method) overcomes these shortcomings. 
All input element uncertainties are combined using SRSS regardless of 
their probability distribution functions, and compensation factor is 
introduced to relief the effect of non-normal distributions. The channel 
uncertainty by proposed method showed reasonable agreement with 
Monte Carlo simulation and the numerical tolerance is acceptable. The 
proposed method could be a practical method when input elements with 

Table 5 
Result of validation for compared with Monte Carlo simulation.  

Evaluation method U(y) dlow dhigh δ Validated 

Case 2 
ISA67.04 method 6.091 1.159 1.159 0.05 No 
GUM95 method 5.755 0.832 0.832 0.05 No 
Fotowicz method 4.933 0.001 0.001 0.05 Yes 
Modified IEC61888 method 4.955 0.023 0.023 0.05 Yes 
Monte Carlo Simulation ylow = − 4.932 yhigh = 4.932 
Case 3 
ISA67.04 method 1.732 0.541 0.541 0.005 No 
GUM95 method 1.196 0.006 0.006 0.005 No 
Fotowicz method 1.196 0.006 0.006 0.005 No 
Modified IEC61888 method 1.194 0.003 0.003 0.005 Yes 
Monte Carlo Simulation y low = − 1.190 yhigh = 1.190  
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the rectangular distribution exist without using a sophisticate computer 
software. The proposed method can be easily used by those who are not 
familiar with GUM95 method. 
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Appendix A. Derivation of rectangular distribution using the principle of maximum entropy 

Suppose P is a continuous probability distribution. The entropy is defined as 

H(P)= −
∫0

X

P(x)logP(x)dx (Eq. A1)  

with the following constraints.  

(1) P(x) ≥ 0  
(2) 

∫
P(x)dx = 1  

(3) 
∫

P(x) ri(x) dx = αi for 1 ≤ i ≤ m 

The first two constraints are characteristics of the probability density function. The third constraint is optional. There could be more than one 
constraint if m > 1. 

Lagrange multiplier could be introduced for the constraints. 

L(P, λ0, λ1, ⋅ ⋅ ⋅ , λm) = −

∫

X

P(x)logP(x)dx+ λ0

⎛

⎝
∫

X

P(x) dx − 1

⎞

⎠+
∑m

i=1
λi

⎛

⎝
∫

X

P(x) ri(x)dx − αi

⎞

⎠ (Eq. A2) 

To maximize the entropy, we maximize the Lagrangian. To maximize the Lagrangian, take the derivative of the Lagrangian with respect to P(x) and 
set the derivative 0. 

∂
∂P(x)

L(P, λ0, λ1, ⋅⋅⋅, λm) = −
∂

∂P(x)

∫

X

P(x) logP(x)dx+ λ0
∂

∂P(x)

⎛

⎝
∫

X

P(x) dx − 1

⎞

⎠+
∑m

i=1
λi

∂
∂P(x)

⎛

⎝
∫

X

P(x) ri(x)dx − αi

⎞

⎠

= −

∫

X

∂
∂P(x)

[P(x) logP(x)]dx+ λ0
∂

∂P(x)

⎛

⎝
∫

X

P(x) dx − 1

⎞

⎠+
∑m

i=1
λi

∂
∂P(x)

⎛

⎝
∫

X

P(x) ri(x)dx − αi

⎞

⎠

= [ − logP(x) − 1] + λ0 +
∑m

i=1
λi ri = 0 

Therefore, 

logP(x) = − 1+ λ0 +
∑m

i=1
λi ri

P(x) = exp

(

− 1+ λ0 +
∑m

i=1
λi ri

)

=

exp
(
∑m

i=1
λi ri

)

exp (1 − λ0)

(Eq. A3)  

Because 
∫

P(x)dx = 1 from constraint (2), 
∫

P(x)dx =
∫

exp

(

− 1+ λ0 +
∑m

i=1
λi ri

)

dx = exp ( − 1+ λ0)

∫

exp

(
∑m

i=1
λi ri

)

dx = 1 

Therefore, 

e1− λ0 =

∫

exp

(
∑m

i=1
λi ri

)

dx (Eq. A4)  
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Substitute Eq. (A4) into Eq. (A3), then we can get P(x) as 

P(x) =
exp

(
∑m

i=1
λi ri

)

exp (1 − λ0)
=

exp
(
∑m

i=1
λi ri

)

∫
exp

(
∑m

i=1
λi ri

)

dx
(Eq. A5) 

The only constraint on a distribution we have is X = [a,b]. So m = 0 which means that λ1 = λ2 = ⋯ = λm = 0. 
Then, we can get 

P(x) =

exp
(
∑m

i=1
λi ri

)

∫
exp

(
∑m

i=1
λi ri

)

dx

=
e0

∫b

a

e0dx

=
1

b − a

(Eq. A6) 

This means that the maximum entropy probability distribution P(x) is the rectangular distribution. 
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