DOI QR코드

DOI QR Code

Portable multi-channel analyzer for embedded gamma radiation in an ARM Cortex-M7 MCU

  • Received : 2023.09.15
  • Accepted : 2023.12.18
  • Published : 2024.05.25

Abstract

The use of digital systems in radiation science has been increased last years in the different knowledge areas, as a detectors, spectrometry, spectroscopy, simulation, etc. This manuscript presents the design and implementation of a low-cost, fully portable multi-channel analyzer for nuclear spectrometry (in situ). The development is based on a 32-bit microcontroller with ARM Cortex-M7, this design is able to digitize and analyze pulses from a radiation detector without the need to transform the input signal with some filter, obtains the maximum height of each of the digitized pulses, segmenting the information into channels to form a histogram and visualizing the LCD screen incorporated in the system. A continuous digitization methodology was used, which is in charge of the DMA and an ADC with a resolution of 12 bits at a speed of 3.6 MSPS. The system has a compact design and can open and save spectra in an SD memory built into the system. The MCA in MCU was tested with a NaI(Tl) Scintillation radiation detector, which allowed us to determine that the spectra obtained are similar compared to commercial MCA's. The results obtained show that the MCA in MCU is efficient for nuclear spectrometry, in addition to being very economical and low power consumption.

Keywords

Acknowledgement

The author Angel Garcia Duran thanks CONAHCyT for the support to carry out the research stay.

References

  1. B.S. Ishkhanov, M.E. Stepanov, T.Y. Tretyakova, Nuclear spectroscopy of 40-48Ca isotopes, Moscow Univ. Phys. Bull. 69 (6) (2014) 433-456. https://doi.org/10.3103/S0027134914060095
  2. R. Augustyniak, J. Stanek, H. Colaux, G. Bodenhausen, W. Kozminski, T. Herrmann, F. Ferrage, Nuclear overhauser spectroscopy of chiral CHD methylene groups, J. Biomol. NMR 64 (1) (2016) 27-37. https://doi.org/10.1007/s10858-015-0002-0
  3. L.G. Sarmiento, D. Rudolph, Nuclear spectroscopy with Geant4: proton and neutron emission & radioactivity, AIP Conf. Proc. 1753 (1) (2016).
  4. G. Li, B. Wan, K. Li, Z. Chen, Y. Han, D. Yang, S. Zeng, Development of high-performance multichannel analyzer by using traditional pulse forming method and high-speed waveform sampling technology, J. Instrum. 14 (5) (2019) T05003. T05003.
  5. S. Buzzetti, M. Capou, C. Guazzoni, A. Longoni, R. Mariani, S. Moser, High-speed FPGA-based pulse-height analyzer for high resolution X-ray spectroscopy, IEEE Trans. Nucl. Sci. 52 (4) (2005) 854-860. https://doi.org/10.1109/TNS.2005.852699
  6. J.A. Schmitz, M.K. Gharzai, S. Balkir, M.W. Hoffman, M. Bauer, A low-power 10-bit multichannel analyzer chip for radiation detection, in: Paper Presented at the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017.
  7. K. Sugihara, S.N. Nakamura, N. Chiga, Y. Fujii, H. Tamura, Development of the low-cost multi-channel analyzer system for γ-ray spectroscopy with a PC sound card, Am. J. Phys. 81 (10) (2013) 792-797. https://doi.org/10.1119/1.4816264
  8. X. Hong, J. Zhou, S. Ni, Y. Ma, J. Yao, W. Zhou, Y. Liu, M. Wang, Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping, J. Synchrotron Radiat. 25 (2018) 505-513. https://doi.org/10.1107/S1600577518000322
  9. Q. Wang, X. Zhang, X. Meng, B. Wang, D. Wang, P. Zhou, B. Tang, Multi-channel analyzer based on a novel pulse fitting analysis method, Nucl. Eng. Technol. 54 (6) (2022) 2023-2030. https://doi.org/10.1016/j.net.2021.12.019
  10. S.J. Murray, J.A. Schmitz, S. Balkir, M.W. Hoffman, A low-power radiation detection SoC with neural network accelerator for radioisotope identification, IEEE Trans. Nucl. Sci. 70 (3) (2023) 272-285. https://doi.org/10.1109/TNS.2023.3241582
  11. J. Yang, M.L. Xiong, X. Zhao, Improved low power multichannel pulse amplitude analyzer, Open Access Libr. J. 7 (2020), e6629.
  12. A. Garcia-Duran, V.M. Hernandez-Davila, H.R. Vega-Carrillo, O.O. Ordaz-Garcia, I. Bravo-Munoz, R. Solis-Robles, FPGA embedded multichannel analyzer, Appl. Radiat. Isot. 141 (2018) 282-287. https://doi.org/10.1016/j.apradiso.2018.07.017
  13. V.E. Sani, M. Mohamadian, I. Alizadeh, H. Afarideh, Application of computers in experiments design, building and evaluation of a new generation of multichannel analyzers implemented in xilinx ZYNQ-7020, Instrum. Exp. Tech. 62 (2019) 771-777. https://doi.org/10.1134/S002044121906006X
  14. S. Sengupta, M.L. Johnston, A SiPM-based gamma spectrometer with field-programmable energy binning for data-efficient isotope analysis, IEEE Trans. Circ. Syst. I: Regul. Pap. 70 (3) (2022) 1133-1146. https://doi.org/10.1109/TCSI.2022.3199484
  15. S. Boorboor, H. Jafari, S.A.H. Feghhi, Development of a novel approach for precise pulse height extraction using Lagrange interpolation, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 919 (2019) 82-88. https://doi.org/10.1016/j.nima.2018.12.028
  16. S. Boorboor, M. Khorsandi, Development of a single-chip digital radiation spectrometer based on ARM Cortex-M7 micro-controller unit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 946 (2019), 162685.