DOI QR코드

DOI QR Code

Effect of gamma irradiation on the size of cellulose nanocrystals with polyethylene glycol and sodium hydroxide/Gd2O3 nanocomposite as contrast agent in magnetic resonance imaging (MRI)

  • Fathyah Whba (Department of Physics, Faculty of Applied Science, Taiz University) ;
  • Faizal Mohamed (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Mohd Idzat Idris (Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Rawdah Whba (Department of Chemistry, Faculty of Applied Science, Taiz University) ;
  • Noramaliza Mohd Noor (Department of Radiology, Faculty of Medicine and Health Science, Universiti Putra Malaysia)
  • Received : 2023.04.16
  • Accepted : 2023.12.17
  • Published : 2024.05.25

Abstract

The attractive properties of gadolinium-based nanoparticles as a positive contrast agent for magnetic resonance imaging (MRI) have piqued the interest of both researchers and clinicians. Nonetheless, due to the biotoxicity of gadolinium (III) ions' free radicals, there is a need to address this issue. Therefore, this research aimed to develop a biocompatible, dispersible, stable, hydrophilic, and less toxic cellulose nanocrystals/gadolinium oxide nanocomposite as contrast agent properties for MRI purposes. This study aimed to synthesize gadolinium oxide nanoparticles coated with cellulose nanocrystals with polyethylene glycol and sodium hydroxide (CNCs-PEG/NaOH)/Gd2O3 using the gamma irradiation method to reduce the particle size. The results showed that using a gamma irradiation dose of 10 kGy, quasi-spherical morphology with a size of approximately 5.5 ± 0.65 nm could be produced. Furthermore, the cytocompatibility of (CNCs-PEG/NaOH)/Gd2O3 nanocomposite synthesized was assessed through MTT assay tests on Hep G2 cells, which demonstrated good cytocompatibility without any cytotoxic effects within a concentration range of (10 ㎍/mL - 150 ㎍/mL) and had sufficient cellular uptake. Moreover, the T1-weighted MRI of (CNCs-PEG/NaOH)/Gd2O3 nanocomposite revealed promising results as a positive contrast agent. It is envisaged that the gamma irradiation method is promising in synthesizing (CNCs-PEG/NaOH)/Gd2O3 nanocomposite with nanoscale for different applications, especially in the radiotherapy field.

Keywords

Acknowledgement

The authors express their gratitude to Universiti Kebangsaan Malaysia (UKM) for their support through grants UKM-GUP-2022-046 and UKM-GUP-2020-035. They would also like to extend their appreciation to the government of Yemen, represented by the Ministry of Higher Education and Scientific Research, for their funding of the scholar project.

References

  1. T.N. Turan, Z. Rumboldt, T.R. Brown, High-resolution MRI of basilar atherosclerosis: three-dimensional acquisition and FLAIR sequences, Brain Behav. 3 (2013) 1-3. https://doi.org/10.1002/brb3.103
  2. P.C. Wu, C.H. Su, F.Y. Cheng, J.C. Weng, J.H. Chen, T.L. Tsai, D.B. Shieh, Modularly assembled magnetite nanoparticles enhance in vivo targeting for magnetic resonance cancer imaging, Bioconjugate Chem. 19 (2008) 1972-1979. https://doi.org/10.1021/bc800092w
  3. Y. Xiao, J. Du, Superparamagnetic nanoparticles for biomedical applications, J. Mater. Chem. B 8 (2020) 354-367. . https://doi.org/10.1039/C9TB01955C
  4. Z. Zuo, T. Syrovets, F. Genze, A. Abaei, G. Ma, T. Simmet, V. Rasche, High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane, Nucl. Magn. Reson.Biomed. 28 (2015) 440-447.
  5. J.W. Bulte, D.L. Kraitchman, Iron oxide MR contrast agents for molecular and cellular imaging. NMR in biomedicine, Int. J.devoted Dev.Appl. Magn. Reson.In Vivo 17 (2004) 484-499.
  6. P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents, Chem. Soc. Rev. 35 (2006) 512-523. https://doi.org/10.1039/b510982p
  7. H.B. Na, J.H. Lee, K. An, Y.I. Park, M. Park, I.S. Lee, T. Hyeon, Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles, Angew. Chem. 119 (2007) 5493-5497. https://doi.org/10.1002/ange.200604775
  8. H.B. Na, T. Hyeon, Nanostructured T1 MRI contrast agents, J. Mater. Chem. 19 (2009) 6267-6273. https://doi.org/10.1039/b902685a
  9. H. Dong, S.R. Du, X.Y.l. Zheng, G.M. Lyu, L.D. Sun, L.D. Li, P.Z. Zhang, C. Zhang, Lanthanide nanoparticles: from design toward bioimaging and therapy, Chem. Rev. 115 (2015) 10725-10815. https://doi.org/10.1021/acs.chemrev.5b00091
  10. F. Wang, E. Peng, B. Zheng, S.F.Y. Li, J.M. Xue, Synthesis of water-dispersible Gd2O3/GO nanocomposites with enhanced MRI T1 relaxivity, J. Phys. Chem. C 119 (2015) 23735-23742. https://doi.org/10.1021/acs.jpcc.5b06037
  11. F. Whba, F. Mohamed, M.I. Idris, Evaluation of physicochemical and biocompatibility characteristics of gadolinium oxide nanoparticles as magnetic resonance imaging contrast agents, Radiat. Phys. Chem. 213 (2023), 111189.
  12. C. Guo, L. Sun, H. Cai, Duan, S. Zhang, Q. Gong, Z. Gu, Gadolinium-labeled biodegradable dendron-hyaluronic acid hybrid and its subsequent application as a safe and efficient magnetic resonance imaging contrast agent, ACS Appl. Mater. Interfaces 9 (2017) 23508-23519. https://doi.org/10.1021/acsami.7b06496
  13. T. Lam, P.K. Avti, P. Pouliot, F. Maafi, J.C. Tardif, E. ' Rh'eaume, A. Kakkar, Fabricating water dispersible superparamagnetic iron oxide nanoparticles for biomedical applications through ligand exchange and direct conjugation, Nanomaterials 6 (2016) 100.
  14. B. Sharavanan, K. Sanem, N.L. Yin, F.K. Deborah, J.H. Michael, Robert, Woodward, Timothy G. St Pierre, Judy S. Riffle, Richey M. Davis, Toward design of magnetic nanoparticle clusters stabilized by biocompatible diblock copolymers for T2-weighted MRI contrast, Langmuir 30 (2014) 1580-1587. https://doi.org/10.1021/la403591z
  15. M.R. Carroll, P.P. Huffstetler, W.C. Miles, J.D. Goff, R.M. Davis, J.S. Riffle, St Pierre, the effect of polymer coatings on proton transverse relaxivities of aqueous suspensions of magnetic nanoparticles, Nanotechnology 22 (2011), 325702.
  16. F. Wang, Synthesis of Gadolinium Oxide Based Nanocomposites as Effective Magnetic Resonance Imaging T1 Contrast Agents, Ph.D. Thesis, Hebei University, 2017.
  17. L. Zhang, Y. Liu, D. Yu, N. Zhang, Gadolinium-loaded chitosan nanoparticles as magnetic resonance imaging contrast agents for the diagnosis of tumor, J. Biomed. Nanotechnol. 9 (2013) 863-869. https://doi.org/10.1166/jbn.2013.1584
  18. J.J. Cheng, J. Zhu, X.S. Liu, D.N. He, J.R. Xu, L.M. Wu, Q. Feng, Gadolinium-chitosan nanoparticles as a novel contrast agent for potential use in clinical bowel-targeted MRI: a feasibility study in healthy rats, Acta. Radiol. 53 (2012) 900-907. https://doi.org/10.1258/ar.2012.110017
  19. L. Faucher, M. Tremblay, J. Lagueux, Y. Gossuin, M.A. Fortin, Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI, ACS Appl. Mater. Interfaces 4 (2012) 4506-4515. https://doi.org/10.1021/am3006466
  20. Y. Kobayashi, H. Morimoto, T. Nakagawa, Y. Kubota, K. Gonda, N. Ohuchi, Fabrication of hollow particles composed of silica containing gadolinium compound and magnetic resonance imaging using them, J. Nanostruct. Chem. 3 (2013) 1-6. https://doi.org/10.1186/2193-8865-3-11
  21. S. Marasini, H. Yue, A. Ghazanfari, S.L. Ho, J.A. Park, S. Kim, G.H. Lee, Polyaspartic acid-coated paramagnetic gadolinium oxide nanoparticles as a dual-modal t1 and t2 magnetic resonance imaging contrast agent, Appl. Sci. 11 (2021) 8222.
  22. W. Pasanphan, L. Chunkoh, S. Choofong, Magnetic gadolinium-chitosan composite nanoparticles created by radiolytic synthesis, in: 18th International Conferences on Composite Materials, Jeju Island, South Korea, 2011.
  23. S.A. Bon, S.D. Mookhoek, P.J. Colver, H.R. Fischer, S. van der Zwaag, Route to stable non-spherical emulsion droplets, Eur. Polym. J. 43 (2007) 4839-4842. https://doi.org/10.1016/j.eurpolymj.2007.09.001
  24. A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Mater. Today 16 (2013) 220-227. https://doi.org/10.1016/j.mattod.2013.06.004
  25. M. Roman, Toxicity of cellulose nanocrystals: a review, Ind. Biotechnol. 11 (2015) 25-33. . https://doi.org/10.1089/ind.2014.0024
  26. C. Endes, S. Camarero-Espinosa, S. Mueller, Foster, E.J. Petri-Fink, A.B. Rothen-Rutishauser, M.J.D. Clift, A critical review of the current knowledge regarding the biological impact of nanocellulose, J. Nanobiotechnol. 14 (2016) 1-14. https://doi.org/10.1186/s12951-015-0156-7
  27. F.M. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari, A. Ardeshirylajimi, PCL/ chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation, Carbohydr. Polym. 118 (2015) 133-142. https://doi.org/10.1016/j.carbpol.2014.10.071
  28. R. Sunasee, U.D. Hemraz, K. Ckless, Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications, Expet Opin. Drug Deliv. 13 (2016) 1243-1256. https://doi.org/10.1080/17425247.2016.1182491
  29. M. Raza, B. Abu-Jdayil, Cellulose nanocrystals from lignocellulosic feedstock: a review of production technology and surface chemistry modification, Cellulose 29 (2022) 685-722. https://doi.org/10.1007/s10570-021-04371-y
  30. F. Whba, F. Mohamed, M.I. Idris, M.S. Yahya, Surface modification of cellulose nanocrystals (CNCs) to form a biocompatible, stable, and hydrophilic substrate for MRI, Appl. Sci. 13 (2023) 6316.
  31. J.H. O'Donnell, D.F. Sangster, Principles of Radiation Chemistry, 1970.
  32. A.M. Abdelghany, E.M. Abdelrazek, S.I. Badr, M.S. Abdel-Aziz, M.A. Morsi, Effect of Gamma-irradiation on biosynthesized gold nanoparticles using Chenopodium murale leaf extract, J. Saudi Chem. Soc. 21 (2017) 528-537. https://doi.org/10.1016/j.jscs.2015.10.002
  33. F. Whba, F. Mohamed, N.R.A.M. Rosli, I.A. Rahman, M.I. Idris, The crystalline structure of gadolinium oxide nanoparticles (Gd2O3-NPs) synthesized at different temperatures via X-ray diffraction (XRD) technique, Radiat. Phys. Chem. 179 (2021), 109212.
  34. L. Feng, Z.L. Chen, Research progress on dissolution and functional modification of cellulose in ionic liquids, J. Mol. Liq. 142 (2008) 1-5. https://doi.org/10.1016/j.molliq.2008.06.007
  35. M. Sfiligoj, S. Hribernik, M. Kurecic, A. Urbanek Krajnc, T. Kreze, K. Stana Kleinschek, Cellulose Nanofibres, Surface Properties of Non-conventional Cellulose Fibres, Springer International Publishing, Cham, Switzerland, 2019, pp. 61-71.
  36. F.Y. Cheng, C.H. Su, Y.S. Yang, Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications, Biomaterials 26 (2005) 729-738. https://doi.org/10.1016/j.biomaterials.2004.03.016
  37. A. Potthast, S. Radosta, B. Saake, S. Lebioda, T. Heinze, U. Henniges, H. Wetzel, Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol, Cellulose 22 (2015) 1591-1613. https://doi.org/10.1007/s10570-015-0586-2
  38. K. Zheng, D. Zhang, D. Zhao, N. Liu, F. Shi, W. Qin, Bright white upconversion emission from Yb3+, Er3+, and Tm3+-codoped Gd2O3 nanotubes, Phys. Chem. Chem. Phys. 12 (2010) 7620-7625. https://doi.org/10.1039/b922230h
  39. D.O. De Castro, J. Bras, A. Gandini, N. Belgacem, Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process, Carbohydrate Polym. 137 (2016) 1-8. https://doi.org/10.1016/j.carbpol.2015.09.101
  40. A. Kaboorani, B. Riedl, Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant, Ind. Crop. Prod. 65 (2015) 45-55. https://doi.org/10.1016/j.indcrop.2014.11.027
  41. H. Khanjanzadeh, R. Behrooz, N. Bahramifar, W. Gindl-Altmutter, M. Bacher, M. Edler, T. Griesser, Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane, Int. J. Biol. Macromol. 106 (2018) 1288-1296. https://doi.org/10.1016/j.ijbiomac.2017.08.136
  42. C.F. Liu, J.L. Ren, F. Xu, J.J. Liu, J.X. Sun, R.C. Sun, Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse, J. Agric. Food Chem. 54 (2006) 5742-5748. https://doi.org/10.1021/jf060929o
  43. R. Da Silva, M.R. Sierakowski, H.P. Bassani, S.F. Zawadzki, C.L. Pirich, L. Ono, R. A. de Freitas, Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft, Int. J. Biol. Macromol. 86 (2016) 599-605. https://doi.org/10.1016/j.ijbiomac.2016.01.115
  44. L. Goetz, M. Foston, A. Mathew, K. Oksman, A.J. Ragauskas, Poly (methyl vinyl ether-co-maleic acid) - polyethylene glycol nanocomposites cross-linked in situ with cellulose nanowhiskers, Biomacromolecules 11 (2010) 2660-2666. https://doi.org/10.1021/bm1006695
  45. D.A. McCormick, B.W. Connors, J.W. Lighthall, D.A. Prince, Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex, J. Neurophysiol. 54 (1985) 782-806. https://doi.org/10.1152/jn.1985.54.4.782
  46. M.Z.A.M. Jamil, F. Mohamed, N.R.A.M. Rosli, I.A. Rahman, M.I. Idris, D. A. Bradley, S.N.M. Mustafa, Effect of gamma irradiation on magnetic gadolinium oxide nanoparticles coated with chitosan (GdNPs-Cs) as contrast agent in magnetic resonance imaging, Radiat. Phys. Chem. 165 (2019), 108407.
  47. D.R. Green, Means to an End: Apoptosis and Other Cell Death Mechanisms, Edisi Ke, Cold Spring Harbor Laboratory Press, 2011.
  48. Z. Liu, X. Liu, Q. Yuan, K. Dong, Li Z. Jiang, J. Ren, X. Qu, Hybrid mesoporous gadolinium oxide nanorods: a platform for multimodal imaging and enhanced insoluble anticancer drug delivery with low systemic toxicity, J. Mater. Chem. 22 (2012) 14982-14990. https://doi.org/10.1039/c2jm31100c
  49. Z. Zou, D. He, X. He, K. Wang, X. Yang, Z. Qing, Q. Zhou, Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery, Langmuir 29 (2013) 12804-12810. https://doi.org/10.1021/la4022646
  50. S. Majeed, S. Shiva Shankar, Rapid, microwave-assisted synthesis of Gd2O3 and Eu: Gd2O3 nanocrystals: characterization, magnetic, optical and biological studies, J. Mater. Chem. B 2 (2014) 5585-5593. https://doi.org/10.1039/C4TB00763H
  51. J.A. Plumb, R. Milroy, S. Kaye, Effects of the ph dependence of 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay, Cancer Res. 49 (1989) 4435-4440.
  52. G. Schmalz, Schuster, A. Koch, H. Schweikl, Cytotoxicity of low ph dentin-bonding agents in a dent in barrier test in vitro, J. Endod. 28 (2002) 188-192. https://doi.org/10.1097/00004770-200203000-00011
  53. I. ISO, 10993-5: 2009 Biological Evaluation of Medical Devices-Part 5: Tests for in Vitro Cytotoxicity, International Organization for Standardization, Geneva..
  54. M.R. Suryani, H. Ismail, Preparation of curcumin nanoparticles and cellular uptake study on HeLa cells, in: International Conference on Latest Trends in Food, Biological & Ecological Science Proceeding, 2015, pp. 13-17.