DOI QR코드

DOI QR Code

Acoustic-based estimation of fish stocks in Widas Reservoir, East Java, Indonesia

  • Siti Nurul Aida (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Agus Djoko Utomo (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Safran Makmur (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Tuah Nanda M. Wulandari (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Khoirul Fatah (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency (BRIN)) ;
  • Yosmaniar (Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN)) ;
  • Indra Suharman (Department of Aquaculture, Faculty of Fisheries and Marine Sciences, Universitas Riau) ;
  • Ulung Jantama Wisha (Research Center for Oceanography, National Research and Innovation Agency (BRIN))
  • Received : 2023.10.28
  • Accepted : 2023.12.28
  • Published : 2024.04.30

Abstract

Widas Reservoir is situated in an area of 570 ha in the Pajaran Village, Madiun Regency, East Java Province, Indonesia, playing an essential role in fisheries, with the average fish catch per year of about 283 tons/year. This study explores the standing stock, growth parameters, mortality, and exploitation rates of several dominant fishes in Widas Reservoir. This study was carried out from February to November 2019. Fish stocks were estimated using acoustic tools, fish catch records, and sizes collected by local enumerators. Fish length frequency sampling was conducted on several dominant fish species, such as Oreochromis niloticus, Barbonymus gonionotus, and Osteochilus vittatus. Based on the length-frequency data, estimating fish population dynamics, the fish population dynamics (infinitive length (L) and growth coefficient (K)) estimation was run in a time series using the Fish Sock Analysis Tool, II (FISAT II) program package. Moreover, the estimation of natural mortality parameters, the fishing mortality parameter, and the exploitation rate was also performed. The approximated overall fish stock in the Widas Reservoir was about 79,848 kg, which lowered with the increase in water depth. Of particular concern, in the surface layer at a depth between 1-5 m, the fish stock reached 58,813 kg, while in the deeper zone (> 15 m), the value significantly lowered by about 98%, reaching 1,219 kg. These results indicate an overfishing in the Widas Reservoir. The value of the exploitation rate (E) of B. gonionotus was 0.748, O. niloticus 0.8, and O. vittatus 0.7, respectively, proving the overfishing states occurred in the study area. Therefore, regulations governing the number of catches and the use of fishing gear are crucial in Widas Reservoir, particularly the use of lift and gill nets with a mesh size of less than 2 cm.

Keywords

Acknowledgement

The authors would like to thank Research Institute for Inland Fisheries and Fisheries Extension Palembang for all supports during this research implementation, research team colleagues who have helped during the research and the fishers as enumerators who helped in the data collection.

References

  1. Aida SN, Ridho MR, Saleh E, Utomo AD. Population dynamics of parameters and the size of the first gonad maturity on Java barbs (Barbsonymus gonionotus) in Pondok reservoir, East Java. Ecol Environ Conserv Pap. 2022a;28:89-94.
  2. Aida SN, Utomo AD. Assessment of water quality for fisheries in Rawa Pening Centre of Java. Bawal. 2016;8:173-82.
  3. Aida SN, Utomo AD. Carrying capacity estimation for fish culture of floating net cages in Pondok reservoir, Ngawi East Java. Bawal. 2018;10:197-208.
  4. Aida SN, Utomo AD, Adjie S, Subroto G, Waro B. Technical reports of fish stock and fishery potential, East Java (KPPPUD 431). Palembang: Research Institute for Inland Fisheries and Fisheries Extensions; 2018. p. 133.
  5. Aida SN, Utomo AD, Anggraeni DP, Ditya YC, Wulandari TNM, Ali M, et al. Distribution of fish species in relation to water quality conditions in Bengawan Solo river, Central Java, Indonesia. Pol J Environ Stud. 2022b;31:5549-61.
  6. Bandara KVSN, Ajith Kumara PAD, Amarasinghe US. Population dynamics of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) (Teleostei, Cichlidae), in some irrigation reservoirs of Sri Lanka. Asian Fish Sci. 2020;33:192-204.
  7. Bartulovic V, Glamuzina B, Conides A, Dulcic J, Lucic D, Njire J, Kozul V. Age, growth, mortality and sex ratio of sand smelt, Atherina boyeri Risso, 1810 (Pisces: Atherinidae) in the estuary of the Mala Neretva River (middle-eastern Adriatic, Croatia). J Appl Ichthyol. 2004;20:427-30.
  8. Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Fadli N, Irham M. Morphometric variations of the genus Barbonymus (Pisces, Cyprinidae) harvested from Aceh Waters, Indonesia. Fish Aquat Life. 2018;26:231-7.
  9. Brooking TE, Rudstam LG. Hydroacoustic target strength distributions of alewives in a net-cage compared with field surveys: deciphering target strength distributions and effect on density estimates. Trans Am Fish Soc. 2011;138:471-86.
  10. Buwono NR, Risjani Y, Soegianto A. Distribution of microplastic in relation to water quality parameters in the Brantas river, East Java, Indonesia. Environ Technol Innov. 2021;24:101915.
  11. Charernnate K, Noranarttragoon P, Jutagate T. Length-based stock assessment of Smith's Barb, Puntioplites proctozystron (Bleeker, 1865) (Cyprinidae) and Asian redtail catfish, Hemibagrus nemurus, (Valenciennes, 1840), (Bagridae) in a multipurpose reservoir in Thailand. Asian Fish Sci. 2021;34:159-67.
  12. Cooke SJ, Paukert C, Hogan Z. Endangered river fish: factors hindering conservation and restoration. Endanger Species Res. 2012;17:179-91.
  13. Djumanto, Setyobudi E, Simanjuntak CPH, Fadjar Rahardjo M. Estimating the spawning and growth of striped snakehead Channa striata Bloch, 1793 in Lake Rawa Pening Indonesia. Sci Rep. 2020;10:19830.
  14. Fauziyah JA. Acoustic density of small pelagic fish in the Arafura sea. J Sci Res. 2010;13:13106.
  15. Feroz Khan M, Panikkar P, Das BK. Population dynamics of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) at Kelavarappalli reservoir in Tamil Nadu. J Inland Fish Soc India. 2021;53:57-65.
  16. Frouzova J, Kubecka J, Balk H, Frouz J. Target strength of some European fish species and its dependence on fish body parameters. Fish Res. 2005;75:86-96.
  17. Gayanilo FC Jr, Sparre P, Pauly D. The FAO-ICLARM stock assessment tools (FISAT) user's guide. In: FAO computerized information series fisheries. Rome: FAO; 1995. p. 126.
  18. Hannachi MS, Ben Abdallah L, Marrakchi O. Acoustic identification of small-pelagic fish species: target strength analysis and school descriptor classification. MedSudMed Tech Doc. 2004;5:90-9.
  19. Hart BT, van Dok W, Djuangsih N. Nutrient budget for Saguling reservoir, West Java, Indonesia. Water Res. 2002;36:2152-60.
  20. Hicks CC, McClanahan T. Assessing gear modifications needed to optimize yields in a heavily exploited, multi-species, seagrass and coral reef fishery. PLOS ONE. 2012;7:e36022.
  21. Isa MM, Md-Shah AS, Mohd-Sah SA, Baharudin N, AbdulHalim MA. Population dynamics of tinfoil barb, Barbonymus schwanenfeldii (Bleeker, 1853) in Pedu Reservoir, Kedah. J Biol Agric Healthc. 2012;2:55-70.
  22. Johnson C, Sarkar UK, Koushlesh SK, Das AK, Das BK, Naskar BK. Population structure of Nile tilapia and its impact on fisheries of a tropical impacted reservoir, Central India. Environ Sci Pollut Res. 2020;27:29091-9.
  23. Kaartvedt S, Klevjer TA, Torgersen T, Sornes TA, Rostad A. Diel vertical migration of individual jellyfish (Periphylla periphylla). Limnol Oceanogr. 2007;52:975-83.
  24. Kang D, Hwang D. Ex situ target strength of rockfish (Sebastes schlegeli) and red sea bream (Pagrus major) in the Northwest Pacific. ICES J Mar Sci. 2003;60:538-43.
  25. King M. Fisheries biology, assessment and management. Oxford: Blackwell; 2007. p. 382.
  26. Lian Y, Huang G, Godlewska M, Cai X, Li C, Ye S, et al. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes. J Oceanol Limnol. 2017;36:587-97.
  27. Ma'mun A, Nurdin E, Priatna A, Mahiswara M. Relationship between the existence of tuna to upper and lower thermocline at fads in Pelabuhan Ratu, West Java. Indones Fish Res J. 2022;28:1-13.
  28. Mello LGS, Rose GA. The acoustic dead zone: theoretical vs. empirical estimates, and its effect on density measurements of semi-demersal fish. ICES J Mar Sci. 2009;66:1364-9.
  29. Moreau J, Sricharoendham B. Growth, mortality and recruitment of fish populations in an Asian man made lake Rajjaprabha reservoir (Thailand) as assessed by length frequency analysis. Asian Fish Sci. 1999;12:277-88.
  30. Mouget A, Goulon C, Axenrot T, Balk H, Lebourges-Dhaussy A, Godlewska M, et al. Including 38 kHz in the standardization protocol for hydroacoustic fish surveys in temperate lakes. Remote Sens Ecol Conserv. 2019;5:332-45.
  31. Nejad JG, Ataallahi M, Park KH. Methodological validation of measuring Hanwoo hair cortisol concentration using bead beater and surgical scissors. J Anim Sci Technol. 2019;61:41-6.
  32. Pauly D. Some simple methods for the assessment of tropical fish stocks. Rome: FAO Fisheries & Aquaculture; 1984. p. 52.
  33. Perivolioti TM, Frouzova J, Tuser M, Bobori D. Assessing the fish stock status in lake Trichonis: a hydroacoustic approach. Water. 2020;12:1823.
  34. Prabowo AD, Nawiyanto S. Pembangunan irigasi widas dan pengaruhnya terhadap ekonomi dan lingkungan di nganjuk, Jawa Timur 1978-2010. Handep J Sejarah Budaya. 2020;4:19-38.
  35. Raghavan R, Dahanukar N, Tlusty MF, Rhyne AL, Krishna Kumar K, Molur S, et al. Uncovering an obscure trade: threatened freshwater fishes and the aquarium pet markets. Biol Conserv. 2013;164:158-69.
  36. Rahman MA, Arshad A, Amin, SMN. Growth and production performance of threatened snakehead fish, Channa striatus (Bloch), at different stocking densities in earthen ponds. Aquac Res. 2012;43:297-302.
  37. Renfree JS, Demer DA. Optimizing transmit interval and logging range while avoiding aliased seabed echoes. ICES J Mar Sci. 2016;73:1955-64.
  38. RIFFE. Technical reports of fish stock and fishery potential, East Java (KPP-PUD). Palembang: Research Institute for Inland Fisheries and Fisheries Extension; 2021. p. 133.
  39. Simmonds J, MacLennan D. Fisheries acoustics theory & practice. In: Fish & aquatic resources series 10. 2nd ed. London: Blackwell Publication; 2005.
  40. Sparre P, Venema SC. Introduction to tropical fish stock assessment: part 1. manual. Rome: FAO Fisheries & Aquaculture; 1992. p. 376.
  41. Susilo H. Management optimization on pondok reservoir in Ngawi, East Java. Pilar Teknol. 2019;10:54-8.
  42. Syafei L, Sudinno D. Invasive alien spesies, sustainability aquatic biodiversity challenges. J Fish Mar Ext. 2018;12:145-61.
  43. Tesfaye G, Tesfaye G, Getahun A, Tadesse Z, Workiye G. Population dynamics of the Nile tilapia (Oreochromis niloticus L. 1758) stock in Lake Langeno, Ethiopia. SINET Ethiop J Sci. 2022;45:174-91.
  44. Tsagarakis K, Giannoulaki M, Pyrounaki MM, Machias A. Species identification of small pelagic fish schools by means of hydroacoustics in the Eastern Mediterranean Sea. Mediterr Mar Sci. 2015;16:151-61.
  45. Utomo AD. Optimization of fisheries reserve management in floodplain for the preservation of fish resources. Research professor inauguration speech. Jakarta: Indonesian Institute of Sciences (LIPI); 2016.
  46. Utomo AD, Samuel. Sustainable management of inland capture fisheries for food security: experience of Indonesia. Fish People. 2017;15:28-35.
  47. Utomo AD, Wibowo A, Suhaimi RA, Atminarso D, Baumgartner LJ. Challenges balancing fisheries resource management and river development in Indonesia. Mar Freshw Res. 2019;70:1265-73.
  48. Viani DZ, Retnaningdyah C. Evaluation of trophic status and organic pollution at Lahor reservoir Malang using diatoms as bioindicator. Biotropika. 2018;6:10-5.
  49. Wheeland LJ, Rose GA. Quantifying fish avoidance of small acoustic survey vessels in boreal lakes and reservoirs. Ecol Freshw Fish. 2014;24:67-76.
  50. Zhou A, Zhang Y, Xie S, Chen Y, Li X, Wang J, et al. Microplastics and their potential effects on the aquaculture systems: a critical review. Rev Aquac. 2020;13:719-33.