DOI QR코드

DOI QR Code

Captive breeding of endangered betta fish, Betta rubra, under laboratory conditions

  • Agus Priyadi (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Asep Permana (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Eni Kusrini (Research Center for Fishery, National Research and Innovation Agency) ;
  • Erma Primanita Hayuningtyas (Research Center for Fishery, National Research and Innovation Agency) ;
  • Bastiar Nur (Research Center for Fishery, National Research and Innovation Agency) ;
  • Lukman (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Josie South (School of Biology, Faculty of Biological Sciences, University of Leeds) ;
  • Sawung Cindelaras (Research Center for Fishery, National Research and Innovation Agency) ;
  • Sulasy Rohmy (Research Center for Fishery, National Research and Innovation Agency) ;
  • Rendy Ginanjar (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Muhamad Yamin (Research Center for Fishery, National Research and Innovation Agency) ;
  • Djamhuriyah S Said (Research Center for Limnology and Water Resources, National Research and Innovation Agency) ;
  • Tutik Kadarini (Research Center for Fishery, National Research and Innovation Agency) ;
  • Darmawan Setia Budi (Study Program of Aquaculture, Department of Health and Life Sciences, Faculty of Health, Medicine, and Life Sciences, Universitas Airlangga)
  • Received : 2023.11.07
  • Accepted : 2023.12.20
  • Published : 2024.04.30

Abstract

Betta rubra, classified as endangered fish species by the International Union for Conservation of Nature (IUCN), has been successfully bred and raised in captivity for two generations under laboratory conditions. This study aimed to provide comprehensive information on the captive breeding of B. rubra, focusing on various parameters crucial for ex-situ conservation and domestication. The research involved breeding trials, embryo and larvae observation, first feeding experiments, larva and fry rearing trials, and the evaluation of growth and reproduction in two generations. The study revealed that the female B. rubra, with an average total length of 5.17 ± 0.15 cm and weight of 1.61 ± 0.06 g, produced an average of 73.67 ± 7.09 eggs, 34.33 ± 5.13 total larvae, and exhibited a hatching rate of 46.67 ± 5.77%. The embryogenesis process commenced on the day of spawning (dps) and continued until the eggs hatched at 6 dps. Larvae development and yolk absorption occurred from 0 to 6 days post-hatching (dph). The study also examined the impact of different initial feeding options, with chopped Tubifex resulting in the most significant in- crease (p < 0.05) in length. The growth pattern of B. rubra larvae showed slow initial growth during the first seven days, followed by a rapid exponential growth phase from day 8 to day 39. Two generations of B. rubra (G1 and G2) were successfully bred in captivity, with G2 showing a better tendency for growth in length and weight compared to G1. Notably, there were no significant differences (p > 0.05) in reproductive success between the wild-origin broodstock (G0), G1, or G2. This research contributes valuable insights into the captive breeding of B. rubra and its early life stages, offering critical information for the conservation and sustainable management of this endangered species. Further research is needed to explore the long-term effects of domestication on behavior, physiology, and phenotypic diversity.

Keywords

Acknowledgement

The authors thank all colleagues for their encouragement and technical support with laboratory analyses.

References

  1. Andrews C, Kaufman L. Captive breeding programmes and their role in fish conservation. In: Olney PJS, Mace GM, Feistner ATC, editors. Creative conservation: interactive management of wild and captive animals. Dordrecht: Springer; 1994. p. 338-51.
  2. Beck BB, Rapaport LG, Stanley Price MR, Wilson AC. Reintroduction of captive-born animals. In: Olney PJS, Mace GM, Feistner ATC, editors. Creative conservation: interactive management of wild and captive animals. Dordrecht: Springer; 1994. p. 265-86.
  3. Brahman LK, Chandra R. Effect of environmental attributes and mosquito larvae on growth parameter of larvicidal fish, Rasbora daniconius. Int J Mosq Res. 2016;3:53-7.
  4. Coates D. Length-dependent changes in egg size and fecundity in females, and brooded embryo size in males, of forktailed catfishes (Pisces: Ariidae) from the Sepik River, Papua New Guinea, with some implications for stock assessments. J Fish Biol. 1988;33:455-64.
  5. Conceicao LEC, Yufera M, Makridis P, Morais S, Dinis MT. Live feeds for early stages of fish rearing. Aquac Res. 2010;41:613-40.
  6. Fleming IA, Agustsson T, Finstad B, Johnsson JI, Bjornsson BT. Effects of domestication on growth physiology and endocrinology of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci. 2002;59:1323-30.
  7. Heming TA, Buddington RK. 6 Yolk absorption in embryonic and larval fishes. In: Hoar WS, Randall DJ, editors. Fish physiology. New York, NY: Academic Press; 1988. p. 407-46.
  8. Hislop JRG. The influence of maternal length and age on the size and weight of the eggs and the relative fecundity of the haddock, Melanogrammus aeglefinus, in British waters. J Fish Biol. 1988;32:923-30.
  9. Hui TH. The identity of Betta rubra (Teleostei: Osphronemidae) revisited, with description of a new species from Sumatra, Indonesia. Raffles Bull Zool. 2013;61:323-30.
  10. James R, Sampath K. Effect of animal and plant protein diets on growth and fecundity in ornamental fish, Betta splendens (Regan). Isr J Aquac Bamidgeh. 2003;55:39-52.
  11. Jardine D, Litvak MK. Direct yolk sac volume manipulation of zebrafish embryos and the relationship between offspring size and yolk sac volume. J Fish Biol. 2003;63:388-97.
  12. Jason Kline S, Bonar SA. Captive breeding of endangered Yaqui Topminnow and Yaqui Chub for recovery purposes. N Am J Aquac. 2011;71:73-8.
  13. Kamler E. Resource allocation in yolk-feeding fish. Rev Fish Biol Fish. 2008;18:143-200.
  14. Lahnsteiner F, Lahnsteiner E, Duenser A. Suitability of different live feed for first feeding of freshwater fish larvae. Aquac J. 2023;3:107-20.
  15. Liao IC. Milkfish culture in Taiwan. In: McVey JP, editor. CRC Handbook of Mariculture, vol. II, finfish Aquaculture. Boca Raton, FL: CRC Press; 1991. p. 91-115.
  16. Liao IC, Huang YS. Methodological approach used for the domestication of potential candidates for aquaculture. Cah Options Mediterr. 2000;47:97-107.
  17. Low BW. Betta rubra [Internet]. IUCN red list threatened species. 2019 [cited 2023 Apr 2]. https://www.iucnredlist.org/species/91310582/91310586
  18. Manabe A, Yamakawa T, Ohnishi S, Akamine T, Narimatsu Y, Tanaka H, et al. A novel growth function incorporating the effects of reproductive energy allocation. PLOS ONE. 2018;13:e0199346.
  19. Manubens J, Comas O, Valls N, Benejam L. First captive breeding program for the endangered Pyrenean sculpin (Cottus hispaniolensis bacescu-master, 1964). Water. 2020;12:2986.
  20. Mellisa S, Rahimi SAE, Umiati U. The effect of different live feeds on the growth and survival of comet goldfish Carrasius auratus auratu larvae. IOP Conf Ser Earth Environ Sci. 2018;216:012025.
  21. Nur F, Batubara A, Eriani K, Tang U, Muhammada AA, Siti-Azizah MN, et al. Effect of water temperature on the physiological responses in Betta rubra, Perugia 1893 (Pisces: Osphronemidae). Int Aquat Res. 2020;12:209-18.
  22. Nur FM, Batubara AS, Fadli N, Rizal S, Siti-Azizah MN, Wilkes M, et al. Lernaea cyprinacea Linnaeus, 1758 (Copepoda: Lernaeidae) infection on Betta rubra Perugia, 1893 (Anabantiformes: Osphronemidae) from Aceh Province, Indonesia. Rev Bras Parasitol Vet. 2022;31:e020421.
  23. Pepin P, Orr DC, Anderson JT. Time to hatch and larval size in relation to temperature and egg size in atlantic cod (Gadus morhua). Can J Fish Aquat Sci. 1997;54:2-10.
  24. Pepin P, Robert D, Bouchard C, Dower JF, Falardeau M, Levesque K, et al. Once upon a larva: revisiting the relationship between feeding succes and growth in fish larvae. ICES J Mar Sci. 2015;72:359-73.
  25. Purtscher U, Humpesch UH. Egg size relationships in five species of salmonids and Thymallus thymallus (L.). River Syst. 2006;16:649-65.
  26. Rakes PL, Shute JR, Shute PW. Reproductive behavior, captive breeding, and restoration ecology of endangered fishes. Environ Biol Fishes. 1999;55:31-42.
  27. Renner-Martin K, Brunner N, Kuhleitner M, Nowak WG, Scheicher K. On the exponent in the Von Bertalanffy growth model. PeerJ. 2018;2018:e4205.
  28. Reyes-Mero BM, Santana-Pineros AM, Munoz-Chumo LG, Cruz-Quintana Y, Gisbert E. Yolk absorption rate and mouth development in larvae of Dormitator latifrons (Perciformes: Eleotridae). Fishes. 2022;7:375.
  29. Semmens D, Swearer SE. Trade-offs obscure the relationship between egg size and larval traits in the diadromous fish Galaxias maculatus. Mar Ecol Prog Ser. 2012;461:165-74.
  30. Sommerfeld N, Holzman R. The interaction between suction feeding performance and prey escape response determines feeding success in larval fish. J Exp Biol. 2019;222(17):jeb204834.
  31. Syafariyah NK, Sulmartiwi L, Budi DS. Incubation temperature effects on some hatching parameters of silver rasbora (Rasbora argyrotaenia) egg. J Appl Aquac. 2023;35:16-26.
  32. Tanaka K, Nishikawa K. Developmental stages of lotic-breeding toad, Bufo torrenticola, with a comparison to lentic-breeding B. japonicus formosus (Amphibia: Anura: Bufonidae). Curr Herpetol. 2022;41:8-23.