DOI QR코드

DOI QR Code

Evaluating the Protective Effectiveness of Rubber Glove Materials Against Organic Solvents Upon Repeated Exposure and Decontamination

  • Li-Wen Liu (Institute of Labor, Occupational Safety and Health) ;
  • Cheng-Ping Chang (Department of Occupational Safety and Health, School of Safety and Health Sciences, Chang Jung Christian University) ;
  • Yu-Wen Lin (Department of Public Health, College of Medicine, Fu Jen Catholic University) ;
  • Wei-Ming Chu (Department of Occupational Safety and Health, School of Safety and Health Sciences, Chang Jung Christian University)
  • Received : 2023.10.15
  • Accepted : 2024.03.31
  • Published : 2024.06.30

Abstract

Background: Glove reuse poses risks, as chemicals can persist even after cleaning. Decontamination methods like thermal aeration, recommended by US OSHA, vary in effectiveness. Some studies show promising results, while others emphasize the importance of considering both permeation and tensile strength changes. This research advocates for informed glove reuse, emphasizing optimal thermal aeration temperatures and providing evidence to guide users in maintaining protection efficiency. Methods: The investigation evaluated Neoprene and Nitrile gloves (22 mils). Permeation tests with toluene and acetone adhered to American Society for Testing Materials (ASTM) F739 standards. Decontamination optimization involved aeration at various temperatures. The experiment proceeded with a maximum of 22 re-exposure cycles. Tensile strength and elongation were assessed following ASTM D 412 protocols. Breakthrough time differences were statistically analyzed using t-test and ANOVA. Results: At room temperature, glove residuals decreased, and standardized breakthrough time (SBT)2 was significantly lower than SBT1, indicating reduced protection. Higher temperature decontamination accelerated residual removal, with ∆SBT (SBT2/SBT1) exceeding 100%, signifying restored protection. Tensile tests showed stable neoprene properties postdecontamination. Results underscore thermal aeration's efficacy for gloves reuse, emphasizing temperature's pivotal role. Findings recommend meticulous management strategies, especially post-breakthrough, to uphold glove-protective performance. Conclusions: Thermal aeration at 100℃ for 1 hour proves effective, restoring protection without compromising glove strength. The study, covering twenty cycles, suggests safe glove reuse with proper decontamination, reducing costs significantly. However, limitations in chemical-glove combinations and exclusive focus on specific gloves caution against broad generalization. The absence of regulatory directives on glove reuse highlight the importance of informed selection and rigorous decontamination validation for workplace safety practices.

Keywords

Acknowledgement

This work received financial support from Grant IOSH95-H308 provided by the Institute of Labor, Occupational Safety and Health, Taiwan. The authors bear sole responsibility for its content, which may not necessarily represent the official views of the Institute of Labor, Occupational Safety and Health.

References

  1. Berankova M, Hojerova J, Perackova Z. Estimated exposure of hands inside the protective gloves used by non-occupational handlers of agricultural pesticides. J Expo Sci Environ Epidemiol 2017 2017 Nov;27(6):625-31.
  2. Nielsen JB, Sorensen JA. Glove material, reservoir formation, and dose affect glove permeation and subsequent skin penetration. Sci Total Environ 2012 Feb 15;417-418:87-91.
  3. Geens T, Aerts E, Borguet M, Haufroid V, Godderis L. Exposure of hairdressers to aromatic diamines: an interventional study confirming the protective effect of adequate glove use. Occup Environ Med 2016 Apr;73(4):221-8.
  4. Fent KW, Alexander B, Roberts J, Robertson S, Toennis C, Sammons D, Bertke S, Kerber S, Smith D, Horn G. Contamination of firefighter personal protective equipment and skin and the effectiveness of decontamination procedures. J Occup Environ Hyg 2017 Oct;14(10):801-14.
  5. Chan HP, Zhai H, Wester RC, Maibach HI. Chapter 27 - Agricultural chemical percutaneous absorption and decontamination. In: Krieger R, editor. Hayes' handbook of pesticide toxicology. 3rd ed. Cambridge, Massachusetts (USA): Elsevier Academic Press; 2010. p. 683-700.
  6. Henry NWIII, Stull JO. Test methods and standards. In: Anna DH, editor. Chemical protective clothing. Fairfax, VA (USA): American Industrial Hygiene Association; 2003. p. 175-268.
  7. US OSHA [Internet]. Technical manual (OTM) section VIII: chapter 1 chemical protective clothing; 2023 [cited 2023 Dec 20] Available from: https://www.osha.gov/otm/section-8-ppe/chapter-1.
  8. Vahdat N, Delaney R. Decontamination of chemical protective clothing. Am Ind Hyg Assoc J 1989 Mar;50(3):152-6.
  9. Gao P, El-Ayouby N, Wassell JT. Change in permeation parameters and the decontamination efficacy of three chemical protective gloves after repeated exposures to solvents and thermal decontaminations. Am J Ind Med 2005 Feb;47(2):131-43.
  10. Mirzaei Aliabadi M, Naderi G, Shahtaheri SJ, Forushani AR, Mohammadfam I, Jahangiri M. Transport properties of carboxylated nitrile butadiene rubber (XNBR)-nanoclay composites; a promising material for protective gloves in occupational exposures. J Environ Health Sci Eng 2014 Feb 28;12(1):51.
  11. Gao P, Tomasovic B, Stein L. Performance evaluation of 26 combinations of chemical protective clothing materials and chemicals after repeated exposures and decontaminations. J Occup Environ Hyg 2011 Nov;8(11):625-35.
  12. Chao KP, Wang P, Chen CP, Tang PY. Assessment of skin exposure to N,Ndimethylformamide and methyl ethylketone through chemical protective gloves and decontamination of gloves for reuse purposes. Sci Total Environ 2011 Feb 15;409(6):1024-32.
  13. Phalen RN, Wong WK. Tensile properties and integrity of clean room and lowmodulus disposable nitrile gloves: a comparison of two dissimilar glove types. Ann Occup Hyg 2012 May;56(4):450-7.
  14. Gao P, Tomasovic B. Change in tensile properties of neoprene and nitrile gloves after repeated exposures to acetone and thermal decontamination. J Occup Environ Hyg 2005 Nov;2(11):543-52.
  15. Douglas A, Simon TR, Goddard M. Barrier durability of latex and vinyl medical gloves in clinical settings. Am Ind Hyg Assoc J 1997 Sep;58(9):672-6.
  16. Phalen RN, Patterson J, Cuadros Olave J, Mansfield SA, Shless JS, Crider YS, Pitchik HO, Qazi AS, Styczynski A, LeMesurier R, Haik D, Kwong LH, LeBoa C, Bhattacharya A, Hamidi YK. Evaluation of the effects of repeated disinfection on medical exam gloves: Part 2. Changes in mechanical properties. J Occup Environ Hyg 2022 Feb;19(2):111-21.
  17. Gao P, Horvatin M, Niezgoda G, Weible R, Shaffer R. Effect of multiple alcoholbased hand rub applications on the tensile properties of thirteen brands of medical exam nitrile and latex gloves. J Occup Environ Hyg 2016 Dec;13(12):905-14.
  18. Mazumder NU, Mandal S, Agnew RJ, Petrova A, Boorady LM, Song G. Characterizing the tensile strength of the fabrics used in firefighters' bunker gear under radiant heat exposure. Polymers (Basel) 2022 Jan 12;14(2):296.
  19. International Organization for Standardization (ISO). Protective clothing. ISO 374-1:2016 Protective gloves against dangerous chemicals and microorganisms - Part 1: terminology and performance requirements for chemical risks. ISO; 2016.
  20. Gajjar RM, Kasting GB. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions. Toxicol Appl Pharmacol 2014;281(1):109-17.
  21. ToxicRAE. Pocket PID PGM-30 operation and maintenance manual rev. E (document No.: 007-4001-004). RAE Systems Inc; May 2005.
  22. American Society for Testing and Materials (ASTM). Standard test method for permeation of liquids and gases through protective clothing materials under conditions of continuous contact (Method F739-99). Philadelphia: ASTM;1999.
  23. American Society for Testing and Materials (ASTM). Standard test methods for vulcanized rubber and thermoplastic elastomers-tension (Method D412-98a). Philadelphia: ASTM; 2003.
  24. Perkins LP. Solvent-polymer interactions. In: Anna DH, editor. Chemical protective clothing. Fairfax, VA (USA): American Industrial Hygiene Association;2003. p. 83-110.
  25. Lee HS, Lin YW. Permeation of hair dye ingredients, p-phenylenediamine and aminophenol isomers, through protective gloves. Ann Occup Hyg 2009 Apr;53(3):289-96.
  26. Chin JY, Batterman SA. Permeation of gasoline, diesel, bioethanol (E85), and biodiesel (B20) fuels through six glove materials. J Occup Environ Hyg 2010 Jul;7(7):417-28.
  27. Lin YW, Que Hee SS. Permeation of a malathion formulation through butyl gloves. J Haz Mat 1998;60(2):143-58.
  28. Lin YW, Que Hee SS. Permeation of a malathion formulation through nitrile gloves. Appl Occup Environ Hyg 1998;13(5):286-98.
  29. Ziskin MH, Behar J, Mansdorf SZ, Decontamination of CPC. In: Anna DH, editor. Chemical protective clothing. Fairfax, VA (USA): American Industrial Hygiene Association; 2003. p. 415-91.
  30. Zellers ET, Sulewski R. Modeling the temperature dependence of N-methylpyrrolidone permeation through butyl- and natural-rubber gloves. Am Ind Hyg Assoc J 1993 Sep;54(9):46-79.
  31. Ranco Rubber Inc [Internet]. CR - neoprene rubber (il): CR or Neoprene polychloroprene; 2023 [cited 2023 Apr 23] Available from: https://rahcorubber.com/materials/cr-neoprene-rubber/.