DOI QR코드

DOI QR Code

Glucocorticoids improve sperm performance in physiological and pathological conditions: their role in sperm fight/flight response

  • Vittoria Rago (Department of Pharmacy, Health and Nutritional Sciences, University of Calabria) ;
  • Adele Vivacqua (Department of Pharmacy, Health and Nutritional Sciences, University of Calabria) ;
  • Saveria Aquila (Department of Pharmacy, Health and Nutritional Sciences, University of Calabria)
  • Received : 2023.06.12
  • Accepted : 2023.10.11
  • Published : 2024.03.31

Abstract

Glucocorticoids play a physiologic role in the adult male reproductive functions, modulating gonadal steroid synthesis and spermatogenesis, through the glucocorticoid receptor (GR). The expression of GR has been described in several key testicular cell types, including somatic cells and early germ cell populations. Nothing is known on GR in human spermatozoa. Herein, we explored the GR expression and its possible role in normal and testicular varicocele semen samples from volunteer donors. After semen parameter evaluation by macro- and microscopic analysis, samples were centrifuged; then spermatozoa and culture media were recovered for further investigations. By western blotting and immunofluorescence analyses we evidenced for the first time in spermatozoa the presence of GR-D3 isoform which was reduced in sperm from varicocele patients. By treating sperm with the synthetic glucocorticoid dexamethasone (DEXA), we found that survival, motility, capacitation, and acrosome reaction were increased in both healthy and varicocele samples. GR involvement in mediating DEXA effects, was confirmed by using the GR inhibitor mifepristone (M2F). Worthy, we also discovered that sperm secretes different cortisol amounts depending on its physio-pathological status, suggesting a defence mechanism to escape the immune system attach in the female genital tract thus maintaining the immune-privilege as in the testis. Collectively, our data suggests a role for glucocorticoids in determining semen quality and function, as well as in participating on sperm immune defensive mechanisms. The novelty of this study may be beneficial and needs to take into account in artificial insemination/drug discovery aimed to enhancing sperm quality.

Keywords

Acknowledgement

We would like to thank Serena and Maria Clelia Gervasi for the English language review of the manuscript.

References

  1. Arango-Lievano M, Lambert WM, Jeanneteau F. Molecular biology of glucocorticoid signaling. Adv Exp Med Biol 2015;872:33-57. https://doi.org/10.1007/978-1-4939-2895-8_2
  2. Desmet SJ, De Bosscher K. Glucocorticoid receptors: finding the middle ground. J Clin Invest 2017;127:1136-45. https://doi.org/10.1172/JCI88886
  3. Kumar R, Thompson EB. Gene regulation by the glucocorticoid receptor: structure:function relationship. J Steroid Biochem Mol Biol 2005;94:383-94. https://doi.org/10.1016/j.jsbmb.2004.12.046
  4. Labeur M, Holsboer F. Molecular mechanisms of glucocorticoid receptor signaling. Medicina (B Aires) 2010;70:457-62.
  5. Bender IK, Cao Y, Lu NZ. Determinants of the heightened activity of glucocorticoid receptor translational isoforms. Mol Endocrinol 2013;27:1577-87. https://doi.org/10.1210/me.2013-1009
  6. Saif Z, Dyson RM, Palliser HK, Wright IM, Lu N, Clifton VL. Identification of eight different isoforms of the glucocorticoid receptor in guinea pig placenta: relationship to preterm delivery, sex and betamethasone exposure. PLoS One 2016;11:e0148226.
  7. Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am 2016;42:15-31, vii. https://doi.org/10.1016/j.rdc.2015.08.002
  8. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol 2013;132:1033-44. https://doi.org/10.1016/j.jaci.2013.09.007
  9. Hu GX, Lian QQ, Lin H, Latif SA, Morris DJ, Hardy MP, Ge RS. Rapid mechanisms of glucocorticoid signaling in the Leydig cell. Steroids 2008;73:1018-24. https://doi.org/10.1016/j.steroids.2007.12.020
  10. Gannon AL, Darbey AL, Chensee G, Lawrence BM, O'Donnell L, Kelso J, Reed N, Parameswaran S, Smith S, Smith LB, Rebourcet D. A novel model using AAV9-cre to knockout adult leydig cell gene expression reveals a physiological role of glucocorticoid receptor signalling in leydig cell function. Int J Mol Sci 2022;23:15015.
  11. Medar ML, Andric SA, Kostic TS. Stress-induced glucocorticoids alter the Leydig cells' timing and steroidogenesis-related systems. Mol Cell Endocrinol 2021;538:111469.
  12. Welter H, Herrmann C, Dellweg N, Missel A, Thanisch C, Urbanski HF, Kohn FM, Schwarzer JU, Muller-Taubenberger A, Mayerhofer A. The glucocorticoid receptor NR3C1 in testicular peritubular cells is developmentally regulated and linked to the smooth muscle-like cellular phenotype. J Clin Med 2020;9:961.
  13. Xiao YC, Huang YD, Hardy DO, Li XK, Ge RS. Glucocorticoid suppresses steroidogenesis in rat progenitor Leydig cells. J Androl 2010;31:365-71. https://doi.org/10.2164/jandrol.109.009019
  14. Sharp V, Thurston LM, Fowkes RC, Michael AE. 11Betahydroxysteroid dehydrogenase enzymes in the testis and male reproductive tract of the boar (Sus scrofa domestica) indicate local roles for glucocorticoids in male reproductive physiology. Reproduction 2007;134:473-82. https://doi.org/10.1530/REP-07-0126
  15. Herrera-Luna CV, Budik S, Aurich C. Gene expression of ACTH, glucocorticoid receptors, 11βHSD enzymes, LH-, FSH-, GH receptors and aromatase in equine epididymal and testicular tissue. Reprod Domest Anim 2012;47:928-35. https://doi.org/10.1111/j.1439-0531.2012.01993.x
  16. Hampl R, Starka L. Glucocorticoids affect male testicular steroidogenesis. Physiol Res 2020;69(Suppl 2):S205-10. https://doi.org/10.33549/physiolres.934508
  17. Stepanov YK, Speidel JD, Herrmann C, Schmid N, Behr R, Kohn FM, Stockl JB, Pickl U, Trottmann M, Frohlich T, Mayerhofer A, Welter H. Profound effects of dexamethasone on the immunological state, synthesis and secretion capacity of human testicular peritubular cells. Cells 2022;11:3164.
  18. Saxena N, Paul PK. Influence of adrenocortical hormones on the onset of spermatogenesis in rats. Indian J Exp Biol 1987;25:296-301.
  19. Penson DF, Ng C, Rajfer J, Gonzalez-Cadavid NF. Adrenal control of erectile function and nitric oxide synthase in the rat penis. Endocrinology 1997;138:3925-32. https://doi.org/10.1210/endo.138.9.5402
  20. Silva EJ, Queiroz DB, Honda L, Avellar MC. Glucocorticoid receptor in the rat epididymis: expression, cellular distribution and regulation by steroid hormones. Mol Cell Endocrinol 2010;325:64-77. https://doi.org/10.1016/j.mce.2010.05.013
  21. Damsgaard J, Joensen UN, Carlsen E, Erenpreiss J, Blomberg Jensen M, Matulevicius V, Zilaitiene B, Olesen IA, Perheentupa A, Punab M, Salzbrunn A, Toppari J, Virtanen HE, Juul A, Skakkebaek NE, Jorgensen N. Varicocele is associated with impaired semen quality and reproductive hormone levels: a study of 7035 healthy young men from six European countries. Eur Urol 2016;70:1019-29. https://doi.org/10.1016/j.eururo.2016.06.044
  22. Napolitano L, Pandolfo SD, Aveta A, Cirigliano L, Martino R, Mattiello G, Celentano G, Barone B, Rosati C, La Rocca R, Spena G, Spirito L. The management of clinical varicocele: robotic surgery approach. Front Reprod Health 2022;4:791330.
  23. Fang Y, Su Y, Xu J, Hu Z, Zhao K, Liu C, Zhang H. Varicocelemediated male infertility: from the perspective of testicular immunity and inflammation. Front Immunol 2021;12:729539.
  24. Castinetti F, Conte-Devolx B, Brue T. Medical treatment of Cushing's syndrome: glucocorticoid receptor antagonists and mifepristone. Neuroendocrinology 2010;92 Suppl 1:125-30. https://doi.org/10.1159/000314224
  25. World Health Organization (WHO). WHO laboratory manual for the examination and processing of human semen. 6th ed. WHO; 2021.
  26. Rago V, Aquila S, Panza R, Carpino A. Cytochrome P450arom, androgen and estrogen receptors in pig sperm. Reprod Biol Endocrinol 2007;5:23.
  27. Rago V, Siciliano L, Aquila S, Carpino A. Detection of estrogen receptors ER-alpha and ER-beta in human ejaculated immature spermatozoa with excess residual cytoplasm. Reprod Biol Endocrinol 2006;4:36.
  28. Aquila S, Sisci D, Gentile M, Carpino A, Middea E, Catalano S, Rago V, Ando S. Towards a physiological role for cytochrome P450 aromatase in ejaculated human sperm. Hum Reprod 2003;18:1650-9. https://doi.org/10.1093/humrep/deg340
  29. Cappello AR, Guido C, Santoro A, Santoro M, Capobianco L, Montanaro D, Madeo M, Ando S, Dolce V, Aquila S. The mitochondrial citrate carrier (CIC) is present and regulates insulin secretion by human male gamete. Endocrinology 2012;153:1743-54. https://doi.org/10.1210/en.2011-1562
  30. Funahashi H. Induction of capacitation and the acrosome reaction of boar spermatozoa by L-arginine and nitric oxide synthesis associated with the anion transport system. Reproduction 2002;124:857-64. https://doi.org/10.1530/rep.0.1240857
  31. Aquila S, Giordano F, Guido C, Rago V, Carpino A. Nitric oxide involvement in the acrosome reaction triggered by leptin in pig sperm. Reprod Biol Endocrinol 2011;9:133.
  32. Yang L, Jeong KW. Flightless-I mediates the repression of estrogen receptor α target gene expression by the glucocorticoid receptor in MCF-7 cells. Endocr J 2019;66:65-74. https://doi.org/10.1507/endocrj.EJ18-0343
  33. Rook GA, Baker R. Cortisol metabolism, cortisol sensitivity and the pathogenesis of leprosy reactions. Trop Med Int Health 1999;4:493-8. https://doi.org/10.1046/j.1365-3156.1999.00432.x
  34. Jaroenporn S, Furuta C, Nagaoka K, Watanabe G, Taya K. Comparative effects of prolactin versus ACTH, estradiol, progesterone, testosterone, and dihydrotestosterone on cortisol release and proliferation of the adrenocortical carcinoma cell line H295R. Endocrine 2008;33:205-9. https://doi.org/10.1007/s12020-008-9075-9
  35. Aquila S, Middea E, Catalano S, Marsico S, Lanzino M, Casaburi I, Barone I, Bruno R, Zupo S, Ando S. Human sperm express a functional androgen receptor: effects on PI3K/AKT pathway. Hum Reprod 2007;22:2594-605. https://doi.org/10.1093/humrep/dem243
  36. Santoro M, Guido C, De Amicis F, Sisci D, Vizza D, Gervasi S, Carpino A, Aquila S. Sperm metabolism in pigs: a role for peroxisome proliferator-activated receptor gamma (PPARγ). J Exp Biol 2013;216(Pt 6):1085-92. https://doi.org/10.1242/jeb.079327
  37. Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012;92:689-737. https://doi.org/10.1152/physrev.00028.2011
  38. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005;6:463-75. https://doi.org/10.1038/nrn1683
  39. Hammerstedt RH, Amann RP. Effects of physiological levels of exogenous steroids on metabolism of testicular, cauda epididymal and ejaculated bovine sperm. Biol Reprod 1976;15:678-85. https://doi.org/10.1095/biolreprod15.5.678