DOI QR코드

DOI QR Code

백두대간 조령산의 관속식물과 수직분포

Vertical distribution and vascular plants on Joryeongsan Mountain in Baekdudaegan, Korea

  • 김중현 (한반도야생식물연구소) ;
  • 김진숙 (한반도식물다양성연구소) ;
  • 신수경 (국립생물자원관 기후환경생물연구과) ;
  • 박성애 (국립환경과학원 물환경공학연구과) ;
  • 박성혁 (국립백두대간수목원 백두대간보존실) ;
  • 한성경 (국립백두대간수목원 백두대간보존실) ;
  • 김진석 (한반도식물다양성연구소)
  • Jung-Hyun Kim (Korean Wild Plant Institute) ;
  • Jin-Suk Kim (Korean Plant Diversity Institute) ;
  • Sookyung Shin (Climate Change and Environmental Biology Research Division, National Institute of Biological Resources) ;
  • Sung-Ae Park (Water Environment Engineering Research Division, National Institute of Environment Research) ;
  • Sunghyuk Park (Baekdudaegan Conservation Division, Baekdudaegan National Arboretum) ;
  • Sung Kyung Han (Baekdudaegan Conservation Division, Baekdudaegan National Arboretum) ;
  • Jin-Seok Kim (Korean Plant Diversity Institute)
  • 투고 : 2023.12.03
  • 심사 : 2024.03.12
  • 발행 : 2024.03.31

초록

본 연구는 백두대간 조령산의 관속식물과 고도별 수직분포 조사를 조사하였다. 2023년 4월부터 2023년 9월까지 총 4회에 걸쳐 조사한 결과, 관속식물은 101과 314속 491종 10아종 43변종 6품종 2교잡종의 총 552분류군이 확인되었다. 또한 우리는 관속식물 360분류군에 대해 고도별 분포범위를 구축하였다. 한반도 특산식물은 19분류군, 희귀식물은 2분류군이었다. 식물구계학적 특정식물은 총 100분류군으로 V등급에 2분류군, IV등급에 7분류군, III등급에 25분류군, II등급에 33분류군, I등급에 33분류군이 확인되었다. 북방계 식물은 78분류군, 외래식물은 29분류군이며, 귀화율 5.3%, 도시화지수 7.4%로 나타났다. 생태계교란식물은 2분류군이 확인되었다. 종 풍부도는 저지대와 중간 고도, 정상부에서 높은 패턴이 나타났다. 고도별 종 조성의 유사도는 저지대인 해발 200~300 m를 제외하고 인접한 고도구간일수록 유사성이 높게 나타났다. 조령산은 고도에 따라 62.1~92.9℃·month의 온도 범위를 보여주었다. 본 연구는 조령산 관속식물의 분포 자료로써 추후 기후변화에 따른 식물의 분포변화 연구를 위한 기초자료로 활용될 것이다.

In this study, we investigated the vertical distribution and vascular plants on Joryeongsan Mountain in Baekdudaegan, Korea. The results of four field surveys from April to September 2023 identified a total of 552 taxa, representing 491 species, ten subspecies, 43 varieties, six forms, and two hybrids in 314 genera and 101 families. The elevational distribution ranges of 360 taxa of vascular plants were also identified. Among them, 19 taxa were endemic to Korea, and two taxa were rare plants. The floristic target plants amounted to 100 taxa, specifically two taxa of grade V, seven taxa of grade IV, 25 taxa of grade III, 33 taxa of grade II, and 33 taxa of grade I. Seventy-eight taxa were northern lineage plants. In all, 29 taxa of alien plants were recorded in the investigated area, with a naturalized index of 5.3% and an urbanization index of 7.4%. Two plants disturbed the ecosystem. Species richness along the elevation showed a reversed double-hump shape with peaks at low, mid, and high elevations. The results of a cluster analysis showed a high degree of similarity between adjacent elevation sections, except in lowlands. Detrended Correspondence Analysis ordination also supported distinct groups by elevation. Warmth index values ranged from 62.1℃·month to 92.9℃·month on Joryeongsan Mountain. Our results provide primary data on vascular plants and valuable information on the current distribution ranges of plant species on Joryeongsan Mountain. These data could serve as a baseline for comparing species shifts at elevations under future climate changes.

키워드

과제정보

본 연구는 한국수목원정원관리원 국립백두대간수목원의 '백두대간생물종정보구축 (KoAGI-2023-KSOB-02-01-01)' 사업의 일환으로 진행되었습니다.

참고문헌

  1. An JH, HJ Park, GH Nam, BY Lee, CH Park and JH Kim. 2017. Vertical distribution of vascular plant species along an elevational gradients in the Gyebangsan area of Odaesan National Park. Korean J. Ecol. Environ. 50:381-402. https://doi.org/10.11614/KSL.2017.50.4.381
  2. Bak BS and MW Son. 1998. Physical geography of Munkyung. J. Korean Assoc. Reg. Geogr. 4:15-30.
  3. Cahill AE, ME Aiello-Lammens, MC Fisher-Reid, X Hua, CJ Karanewsky, HY Ryu, GC Sbeglia, F Spagnolo, JB Waldron and JJ Wiens. 2014. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 41:429-442. https://doi.org/10.1111/jbi.12231
  4. Chen IC, JK Hill, R Ohlemuller, DB Roy and CD Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026. https://doi.org/10.1126/science.1206432
  5. Cho YH, JH Kim and SH Park. 2016. Grasses and Sedges in South Korea. Geobook. Seoul, Korea.
  6. Chung GY, HD Jang, KS Chang, HJ Choi, YS Kim, HJ Kim and DC Son. 2023. A checklist of endemic plants on the Korean Peninsula (II). Korean J. Pl. Taxon. 53:79-101. https://doi.org/10.11110/kjpt.2023.53.2.79
  7. Cirimwami L, C Doumenge, JM Kahindo and C Amani. 2019. The effect of elevation on species richness in tropical forests depends on the considered lifeform: Results from an East African mountain forest. Trop. Ecol. 60:473-484. https://doi.org/10.1007/s42965-019-00050-z
  8. Gantsetseg A, SY Jung, WB Cho, EK Han, S So and JH Lee. 2020. Definition and species list of northern lineage plants on the Korean Peninsula. Korean Herb. Med. Inf. 8:183-204. https://doi.org/10.22674/KHMI-8-2-5
  9. Grytnes JA and OR Vetaas. 2002. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159:294-304. https://doi.org/10.1086/338542
  10. GSG. 2023. www.goesan.go.kr. Goesan-gun. Goesan, Korea. Accessed on September 15, 2023.
  11. Hawkins BA, R Field, HV Cornell, DJ Currie, JF Guegan, DM Kaufman, JT Kerr, GG Mittelbach, T Oberdorff, EM O'Brien, EE Porter and JRG Turner. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105-3117. https://doi.org/10.1890/03-8006
  12. Hill MO and HG Gauch Jr. 1980. Classification and Ordination. pp. 47-58. In: Detrended Correspondence Analysis: An Improved Ordination Technique (van der Maarel E, ed.). Springer. Dordrecht, Netherlands. https://doi.org/10.1007/978-94-009-9197-2_7
  13. KFS. 2023. Korea Forest Service. https://www.forest.go.kr. Daejeon, Korea. Accessed on October 11, 2023.
  14. Kim ES, JS Lee, GE Park and JH Lim. 2019. Change of subalpine coniferous forest area over the last 20 years. J. Korean Soc. For. Sci. 108:10-20. https://doi.org/10.14578/jkfs.2019.108.1.10
  15. Kim JH and SA Park. 2022. Floristic study of Mt. Seongdeok (Ganghwa-gun) in Korea. Korean J. Environ. Biol. 40:615-630. https://doi.org/10.11626/KJEB.2022.40.4.615
  16. Kim JH, JS Kim, S Shin, TI Heo, YH Kim, S Park and JS Kim. 2023. Vertical distribution and vascular plants in the Gakho mountain (Yeongdong-gun), Korea. Korean J. Environ. Biol. 41:60-88. https://doi.org/10.11626/KJEB.2023.41.1.060
  17. Kim JS, JH Kim and JH Kim. 2018. Herbaceous Plants of Korean Peninsula I. Plants Living in Seasides, Rivers, Wetlands and Cities. Dolbegae. Paju, Korea.
  18. Kim JS, JM Chung, SY Kim, JH Kim and BY Lee. 2014. Phytogeographic study on the Holocene hypsithermal relict plant populations in the Korean Peninsula. Korean J. Pl. Taxon. 44:208-221. https://doi.org/10.11110/kjpt.2014.44.3.208
  19. Kim TW, SH Chun, KH Kang and JL Jeon. 1993. Flora of Mt. Choryong, Mt. Baekhwa and Mt. Gunja in Kwesangun, Chungchongbukdo. Seoul Nat'l Univ., Coll. Agric. Life Sci., Bull. Kwanak Arb. 13:37-62.
  20. Kim TY and JS Kim. 2018. Woody Plants of Korean Peninsula. Dolbegae. Paju, Korea.
  21. Kira T. 1948. On the altitudinal arrangement of climatic zones in Japan. Kanchi-Nogaku 2:143-173.
  22. KNA. 2020. Checklist of Vascular Plants in Korea (Native Plants). Korea National Arboretum. Pocheon, Korea.
  23. KNA. 2021a. Checklist of Vascular Plants in Korea (Alien Plants). Korea National Arboretum. Pocheon, Korea.
  24. KNA. 2021b. The National Red List of Vascular Plants in Korea. Korea National Arboretum. Pocheon, Korea.
  25. Kovach WL. 2007. MVSP - A Multivariate Statistical Package for Windows, ver. 3.1. Kovach Computing Services. Pentraeth, Wales, UK.
  26. Kwak AK, JK Oh and YW Park. 1999. Study on the flora of BaekDoo great mountain chain, South Korea. J. Kor. Biota. 4:1-33.
  27. Lee CS and KH Lee. 2018. Pteridophytes of Korea: Lycophytes & Ferns (2nd edition). Geobook. Seoul, Korea.
  28. Lee JW, JS Lee, JK Ahn, SH Hwang and JW Kim. 2020. Flora of the vascular plants of the Baekdudaegan conservation area in Korean Peninsula (Mil-jae to Myo-jeok-jae) - Including valley rivers -. J. Korean Isl. 32:203-228. https://doi.org/10.26840/JKI.32.3.203
  29. Lee TB. 1980. Illustrated Flora of Korea. Hyangmunsa. Seoul, Korea.
  30. Lee WT and YJ Yim. 2002. Plant Geography with Special Reference to Korea. Kangwon National University Press. Chuncheon, Korea.
  31. Lee WT. 1996. Coloured Standard Illustrations of Korean Plants. Academy Publishing Co. Seoul, Korea.
  32. Lenoir J, JC Gegout, PA Marquet, P de Ruffray and H Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768-1771. https://doi.org/10.1126/science.1156831
  33. McCain CM and JA Grytnes. 2010. Elevational gradients in species richness. pp. 1-10. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons Ltd. Chichester, UK.
  34. McCain CM. 2009. Global analysis of bird elevation diversity. Glob. Ecol. Biogeogr. 18:346-360. https://doi.org/10.1111/j.1466-8238.2008.00443.x
  35. ME. 2012. The Biodiversity of Korea. Ministry of Environment. Gwacheon, Korea.
  36. Moon J, C Shim, O Jeong, JW Hong, JH Han and YI Song. 2020. Characteristics in regional climate change over South Korea for regional climate policy measures: Based on long-term observations. J. Climate Change Res. 11:755-770. https://doi.org/10.15531/KSCCR.2020.11.6.755
  37. NIBR. 2017. Plnat Diversity Research by the Regional Parataxonomist(II). National Institute of Biological Resources. Incheon, Korea.
  38. NIE. 2018. Floristic Target Species (FT Species) in Korea. National Institute of Ecology. Seocheon, Korea.
  39. NIE. 2022. Invasive Alien Species in Korea. National Institute of Ecology. Seocheon, Korea.
  40. Park HJ, JH Ahn, IS Seo, SR Lee, BY Lee and JH Kim. 2020. Distribution pattern of vascular plant species along an elevational gradient in the Samga area of Sobaeksan National Park. J. Korean Soc. For. Sci. 109:1-22. https://doi.org/10.14578/jkfs.2020.109.1.1
  41. Park SH. 2009. New Illustrations and Photographs of Naturalized Plants of Korea. Ilchokak. Seoul, Korea.
  42. Parmesan C and G Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37-42. https://doi.org/10.1038/nature01286
  43. Rowe RJ. 2009. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32:411-422. https://doi.org/10.1111/j.1600-0587.2008.05538.x
  44. Shin S, JH Kim, DH Kang, JS Kim, HG Kang, HD Jang, JS Lee, JE Han and HK Oh. 2022. Northern distribution limits and future suitable habitats of warm temperate evergreen broad-leaved tree species designated as climate-sensitive biological indicator species in South Korea. J. Ecol. Environ. 46:30. https://doi.org/10.5141/jee.22.053
  45. Shin S, JH Kim, JH Dang, IS Seo and BY Lee. 2021. Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea. J. Ecol. Environ. 45:7. https://doi.org/10.1186/s41610-021-00182-1
  46. Sorensen TA. 1948. A method of establishing groups of equal amplitudes in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5:1-34.
  47. Yim YJ. 1977. Distribution of forest vegetation and climate in the Korean Peninsula III. Distribution of tree species along the thermal gradient. Jpn. J. Ecol. 27:177-189.
  48. You JH, SG Jung, IH Park, GY Lee, CK Ahn, HW Cho and CH Lee. 2006. Classification by characteristics of flora in Mt. Joryeong, Geosan-gun, Chungcheongbuk-do. Korean J. Plant Res. 19:459-470.
  49. Yun JH, JH Kim, KH Oh and BY Lee. 2011. Distributional change and climate condition of warm-temperate evergreen broadleaved trees in Korea. Korean J. Environ. Ecol. 25:47-56.