DOI QR코드

DOI QR Code

Toxicity study of cadmium and copper on riparian collembolan species Yuukianura szeptyckii (Neanuridae)

수변 서식 톡토기 Yuukianura szeptyckii (Neanuridae)에 대한 카드뮴과 구리 독성 연구

  • Hagyeong Kim (Department of Biology Education, Pusan National University) ;
  • Jimin Shin (Department of Biology Education, Pusan National University) ;
  • Dohyeon Jeong (Department of Biology Education, Pusan National University) ;
  • Juyeong Jeong (Department of Biology Education, Pusan National University) ;
  • Yongeun Kim (Ojeong Resilience Institute, Korea University) ;
  • June Wee (Ojeong Resilience Institute, Korea University) ;
  • Kijong Cho (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yun-Sik Lee (Department of Biology Education, Pusan National University)
  • 김하경 (부산대학교 생물교육과) ;
  • 신지민 (부산대학교 생물교육과) ;
  • 정도현 (부산대학교 생물교육과) ;
  • 정주영 (부산대학교 생물교육과) ;
  • 김용은 (고려대학교 오정리질리언스연구원) ;
  • 위준 (고려대학교 오정리질리언스연구원) ;
  • 조기종 (고려대학교 환경생태공학부) ;
  • 이윤식 (부산대학교 생물교육과)
  • Received : 2024.02.05
  • Accepted : 2024.03.06
  • Published : 2024.03.31

Abstract

The ecosystem provides a diverse array of environmental conditions for organisms, and only those that are capable of successfully adapting to these conditions within their habitats can endure, thrive, and proliferate. Further, the environmental conditions within these habitats can significantly affect the bioavailability of chemicals that are introduced therein, thus resulting in varied adverse impacts on the organisms. The present study aims to evaluate the sensitivity of Yuukianura szeptyckii - a species adapted to riparian - to heavy metals following ISO guideline 11276, with the objective of assessing its potential as an indicator species for ecotoxicological evaluations in riparian habitats. The findings revealed that cadmium and copper both had significant toxic effects depending on their concentrations. For cadmium, the LC50 was 280 mg kg-1, EC50 was 66 mg kg-1, and NOEC and LOEC were 25 and 50 mg kg-1, respectively. For copper, the LC50 was 911 mg kg-1, EC50 was 151 mg kg-1, and LOEC was 50 mg kg-1. Comparative analysis with previous results for the international standard species Folsomia candida and the domestic standard species Allonychiurus kimi indicated that Y. szeptyckii exhibited even greater sensitivity to toxicity values. The adverse effects on survival and reproduction were closely associated with the influx concentration of heavy metals in their bodies. Altogether, the results suggest that Y. szeptyckii is a sensitive species for ecotoxicological assessments in riparian habitats, thus making it suitable as an indicator species, particularly in riparian ecosystems that are characterized by relatively high humidity conditions.

생태계는 생물에게 매우 다양한 환경조건의 서식처를 제공하며 이 서식처 내에 적응한 생물만이 생존, 성장, 번식하며 해당 서식처에 살아가게 된다. 또한 서식처의 환경조건들은 서식처로 유입한 화학물질의 생물유효도(bioavailability)에 크게 영향을 미쳐 생물들이 받는 부정적 영향이 서로 다를 수 있다. 본 연구에서는 생태독성평가에 적합한 ISO guideline 11276의 독성평가 표준종 중 토양 생태계에 다양한 서식처 조건 중 수변 생태계에서 적응하여 살아가는 Yuukianura szeptyckii의 중금속에 대한 평가 민감성을 확인하고 수변 서식처 중금속 생태독성평가종으로서의 가능성을 확인하는 데 있다. 결과는 카드뮴과 구리 모두 농도에 따른 유의한 독성영향을 보였다. 카드뮴의 경우 LC50은 280 mg kg-1, EC50은 66 mg kg-1, NOEC와 LOEC는 각각 25, 50 mg kg-1으로 나타났으며 구리의 경우에는 LC50은 911 mg kg-1, EC50은 151 mg kg-1, LOEC는 50 mg kg-1으로 나타났다. 기존의 국제표준종인 Folsomia candida와 국내표준종인 Allonychiurus kimi의 이전 결과와 비교하면 더욱 민감한 독성값을 보였으며, 이러한 생존과 번식에 미치는 부정적 영향은 체내의 중금속의 유입 농도와 밀접한 관련을 보였다. Y. szeptyckii는 수분 함량이 높은 토양에서 중금속 생태독성평가에 민감한 종으로 나타났으며, 상대적으로 높은 습도를 보일 가능성이 높은 수변생태계에 적합한 생태독성평가종으로 사용이 가능할 것으로 생각된다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업 (2년)에 의하여 연구되었음.

References

  1. Allison JD and TL Allison. 2005. Partition Coefficients for Metals in Surface Water, Soil, and Waste. Reprot: EPA/600/R-05/074. US Environmental Protection Agency. Washington, D.C.
  2. Ashraf MA, MJ Maah and I Yusoff. 2014. Soil contamination, risk assessment and remediation. pp. 3-56. In: Environmental Risk assessment of Soil Contamination (Hernandez Soriano MC, ed.). InTech. Rijeka, Croatia. https://doi.org/10.5772/57287
  3. Crommentuijn T, J Brils and NM VanStraalen. 1993. Influence of cadmium on life-history characteristics of Folsomia candida (Willem) in an artificial soil substrate. Ecotox. Environ. Safe. 26:216-227. https://doi.org/10.1006/eesa.1993.1051
  4. Haanstra L, P Doelman and JHO Voshaar. 1985. The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84:293-297. https://doi.org/10.1007/BF02143194
  5. Henis Y. 1999. Biotic and abiotic factors involved in bioavailability of pollutants. pp. 197-204. In: Novel Approaches for Bioremediation of Organic Pollution (Fass R, Y Flashner and S Reuveny, eds.). Springer. Boston, Massachusetts. https://doi.org/10.1007/978-1-4615-4749-5_20
  6. ISO. 1999. Soil Quality: Inhibition of Reproduction of Collembola (Folsomia candida) by Soil Pollutants. ISO 11267:1999. International Organization for Standardization. Geneva, Switzerland.
  7. ISO. 2023. Soil Quality: Inhibition of Reproduction of Collembola (Folsomia candida) by Soil Contaminants. ISO 11267:2023. International Organization for Standardization. Geneva, Switzerland.
  8. Kebede G, T Tafese, EM Abda, M Kamaraj and F Assefa. 2021. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts. J. Chem. 2021:1-17. https://doi.org/10.1155/2021/9823362
  9. Kim D, JI Kwak, W Hwang, YH Lee, YS Lee, JI Kim, S Hong, S Hyun and YJ An. 2022. Site-specific ecological risk assessment of metal -contaminated soils based on the TRIAD approach. J. Hazard. Mater. 434:128883. https://doi.org/10.1016/j.jhazmat.2022.128883
  10. Koptsik SV and GN Koptsik. 2022. Assessment of current risks of excessive heavy metal accumulation in soils based on the concept of critical loads: A review. Eurasian Soil Sci. 55:627-640. https://doi.org/10.1134/S1064229322050039
  11. Lee YS, J Son, J Wee, Y Kim, DY Kim, JH Kwon and K Cho. 2019a. Contributions of egg production and egg hatching to the total toxicity of teflubenzuron in Yuukianura szeptyckii (Collembola) in soil toxicity test. Environ. Sci. Pollut. Res. 26:26184-26192. https://doi.org/10.1007/s11356-019-05892-7
  12. Lee YS, J Son, J Wee, Y Kim, J Hong and K Cho. 2020. A reconsideration of the safety of fenoxycarb (IGR) in soil environment: The toxicity of fenoxycarb to Yuukianura szeptyckii (Collembola). J. Asia-Pac. Entomol. 23:214-218. https://doi.org/10.1016/j.aspen.2019.12.006
  13. Lee YS, K Cho and KH Park. 2019b. New record of Folsomia quadrioculata (Tullberg, 1871) and redescription of Folsomia octoculata (Handschin, 1925) from the forest of South Korea. Korean J. Environ. Biol. 37:1-7. https://doi.org/10.11626/KJEB.2019.37.1.001
  14. Lee YS, MS Kim, J Wee, HG Min, JG Kim and K Cho. 2021. Effect of bioavailable arsenic fractions on the collembolan community in an old abandoned mine waste. Environ. Geochem. Health 43:3953-3966. https://doi.org/10.1007/s10653-021-00895-1
  15. Lee YS, NH Yang, J Son, Y Kim, KH Park and K Cho. 2016. Effects of temperature on development, molting, and population growth of Yuukianura szeptyckii Deharveng & Weiner, 1984 (Collembola: Neanuridae). Appl. Soil Ecol. 108:325-333. https://doi.org/10.1016/j.apsoil.2016.09.011
  16. Lee YS, SE Lee, J Son, Y Kim, J Wee and K Cho. 2018. Toxicity effects and biomarkers of tebufenozide exposure in Yuukianura szeptyckii (Collembola: Neanuridae). Environ. Geochem. Health. 40:2773-2784. https://doi.org/10.1007/s10653-018-0143-7
  17. Mohan M, A Chacko, M Rameshan, VG Gopikrishna, VM Kannan, NG Vishnu, SA Sasi and KR Baiju. 2022. Restoring riparian ecosystems during the UN-decade on ecosystem restoration: a global perspective. Anthropol. Sci. 1:42-61. https://doi.org/10.1007/s44177-022-00009-1
  18. Nogales B, MP Lanfranconi, JM Pina-Villalonga and R Bosch. 2011. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 35:275-298. https://doi.org/10.1111/j.1574-6976.2010.00248.x
  19. OECD. 1984. OECD Guideline for Testing of Chemicals: Earthworm, Acute Toxicity Test. Test No.207. Organisation for Economic Cooperation and Developmen. Paris, France. https://doi.org/10.1787/9789264070042-en
  20. Patel KF, SJ Fansler, TP Campbell, B Bond-Lamberty, AP Smith, T RoyChowdhury, LA McCue, T Varga and VL Bailey. 2021. Soil texture and environmental conditions influence the biogeochemical responses of soils to drought and flooding. Commun. Earth Environ. 2:127. https://doi.org/10.1038/s43247-021-00198-4
  21. Rahim HU, WA Akbar and JM Alatalo. 2022. A comprehensive literature review on cadmium (Cd) status in the soil environment and its immobilization by biochar-based materials. Agronomy 12:877. https://doi.org/10.3390/agronomy12040877
  22. SAS Institute. 2011. SAS/IML 9.3 User's Guide. SAS Institute Inc. Cary, North Carolina.
  23. Scott-Fordsmand JJ, PH Krogh and JM Weeks. 2000. Responses of Folsomia fimetaria (Collembola: Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment. Environ. Toxicol. Chem. 19:1297-1303. https://doi.org/10.1002/etc.5620190511
  24. Singha S and S Chatterjee. 2022. Soil Pollution by Industrial Effluents, Solid Wastes and Reclamation Strategies by Microorganisms. pp. 471-488. In: Soil Health and Environmental Sustainability: Application of Geospatial Technology (Shit PK, PP Adhikary, GS Bhunia and D Sengupta, eds.). Springer. Cham, Switzerland. https://doi.org/10.1007/978 -3 -031-09270 -1_20
  25. Son J, YS Lee, SE Lee, KI Shin and K Cho. 2017. Bioavailability and toxicity of copper, manganese, and nickel in Paronychiurus kimi (Collembola), and biomarker discovery for their exposure. Arch. Environ. Contam. Toxicol. 72:142-152. https://doi.org/10.1007/s00244-016-0328-y
  26. Son J, YS Lee, Y Kim and K Cho. 2022. Soil compression influences the avoidance behavior of Allonychiurus kimi (Collembola) to cadmium and copper. Pedosphere 32:487-494. https://doi.org/10.1016/S1002-0160(21)60088-7
  27. Son J, YS Lee, Y Kim, SE Lee, JG Kim, S Hyun and K Cho. 2011. Soil compaction as a stressor, and its effect on cadmium toxicity to Paronychiurus kimi (Collembola). Appl. Soil Ecol. 47:204-209. https://doi.org/10.1016/j.apsoil.2010.12.005
  28. Wang X, D Wei, Y Ma and MJ McLaughlin. 2015. Derivation of soil ecological criteria for copper in Chinese soils. PLoS One 10:e0133941. https://doi.org/10.1371/journal.pone.0133941
  29. Wee J, YS Lee, Y Kim, YH Lee, SE Lee, S Hyun and K Cho. 2021a. Multigeneration toxicity of Geunsami® (a glyphosatebased herbicide) to Allonychiurus kimi (Lee) (Collembola) from sub-individual to population levels. Environ. Pollut. 291:118172. https://doi.org/10.1016/j.envpol.2021.118172
  30. Wee J, YS Lee, T Lee, P Kim, J Son, Y Kim and K Cho. 2021b. The complete mitochondrial genome of Yuukianura szeptyckii Deharveng & Weiner 1984 (Collembola: Neanuridae). Mitochondrial DNA B. 6:925-926. https://doi.org/10.1080/23802359.2021.1888330