DOI QR코드

DOI QR Code

Diabetes disrupts osteometric and trabecular morphometric parameters in the Zucker Diabetic Sprague-Dawley rat femur

  • Robert Ndou (Department of Human Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University) ;
  • Vaughan Perry (Department of Human Anatomy and Histology, School of Medicine, Sefako Makgatho Health Sciences University) ;
  • Gcwalisile Frances Dlamini (School of Anatomical Sciences, Faculty of Health Sciences, University of Witwatersrand)
  • 투고 : 2024.01.09
  • 심사 : 2024.03.05
  • 발행 : 2024.06.30

초록

Type 2 diabetes mellitus is increasingly becoming more prevalent worldwide together with hospital care costs from secondary complications such as bone fractures. Femoral fracture risk is higher in diabetes. Therefore, this study aimed to assess the osteometric and microarchitecture of the femur of Zucker Diabetic Sprague-Dawley (ZDSD) femur. Ten-week-old male rats (n=38) consisting of 16 control Sprague-Dawley (SD) and 22 ZDSD rats were used. The rats were terminated at 20 weeks and others at 28 weeks of age to assess age, diabetes duration effects and its severity. Bilateral femora were taken for osteometry, bone mass measurements and micro-focus X-ray computed tomography scanning to assess the trabecular number (TbN), thickness (TbTh), spaces (TbSp), bone tissue volume to total volume (BV/TV) and volume (BV). Diabetic rats had shorter (except for 20-weeks-old), lighter, narrower, and less robust bones than SD controls that wered more robust. Although cortical area was similar in all diabatic and control rats, medullary canal area was the largest in ZDSD rats. This means that the diabetic rats bones were short, light and hollow. Diabetic rats aged 20 weeks had reduced BV, BV/TV, TbN with more spacing (TbSp). In contrast, the 28 weeks old diabetic rats only showed reduced BV and TbN. Discriminant function analysis revealed, for the first time, that osteometric parameters and TbTh, TbN, and TbSp were affected by diabetes. This knowledge is valuable in the management of diabetic complications.

키워드

과제정보

Ms Hasiena Ali provided technical assistance and the staff of the CAS at the University of the Witwatersrand provided animal husbandry. The views and opinions expressed are those of the authors and do not necessarily represent the official views of the SA MRC.

참고문헌

  1. Regufe VMG, Pinto CMCB, Perez PMVHC. Metabolic syndrome in type 2 diabetic patients: a review of current evidence. Porto Biomed J 2020;5:e101.
  2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 2019;157:107843.
  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022;183:109119.
  4. Blakytny R, Spraul M, Jude EB. Review: the diabetic bone: a cellular and molecular perspective. Int J Low Extrem Wounds 2011;10:16-32.
  5. Hamann C, Goettsch C, Mettelsiefen J, Henkenjohann V, Rauner M, Hempel U, Bernhardt R, Fratzl-Zelman N, Roschger P, Rammelt S, Gunther KP, Hofbauer LC. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Endocrinol Metab 2011;301:E1220-8.
  6. Ismawati, Mukhyarjon, Asni E, Romus I. The effect of alpha-lipoic acid on expression of VCAM-1 in type 2 diabetic rat. Anat Cell Biol 2019;52:176-82.
  7. Peterson RG, Jackson CV, Zimmerman K, de Winter W, Huebert N, Hansen MK. Characterization of the ZDSD rat: a translational model for the study of metabolic syndrome and type 2 diabetes. J Diabetes Res 2015;2015:487816.
  8. Starup-Linde J, Vestergaard P. Biochemical bone turnover markers in diabetes mellitus - a systematic review. Bone 2016;82:69-78.
  9. Reinwald S, Peterson RG, Allen MR, Burr DB. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab 2009;296:E765-74.
  10. Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, Johnson KC, Margolis KL. Risk of fracture in women with type 2 diabetes: the women's health initiative observational study. J Clin Endocrinol Metab 2006;91:3404-10.
  11. Oei L, Zillikens MC, Dehghan A, Buitendijk GH, Castano-Betancourt MC, Estrada K, Stolk L, Oei EH, van Meurs JB, Janssen JA, Hofman A, van Leeuwen JP, Witteman JC, Pols HA, Uitterlinden AG, Klaver CC, Franco OH, Rivadeneira F. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care 2013;36:1619-28.
  12. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007;166:495-505.
  13. Valderrabano RJ, Linares MI. Diabetes mellitus and bone health: epidemiology, etiology and implications for fracture risk stratification. Clin Diabetes Endocrinol 2018;4:9.
  14. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int 2009;84:45-55.
  15. Creecy A, Uppuganti S, Merkel AR, O'Neal D, Makowski AJ, Granke M, Voziyan P, Nyman JS. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int 2016;99:289-301.
  16. Prisby RD, Swift JM, Bloomfield SA, Hogan HA, Delp MD. Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol 2008;199:379-88.
  17. Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res 2015;30:951-66.
  18. Martin RM, Correa PH. Bone quality and osteoporosis therapy. Arq Bras Endocrinol Metabol 2010;54:186-99.
  19. Sikdar A, Mushrif-Tripathy V. A comparative study of robusticity indices of long bones among hunter-gatherers and early agro-pastoral groups of India. Am J Biol Anthropol 2023;182:93-108.
  20. Dlamini GF, Ndou R. Osteoblastogenesis and osteolysis in the Zucker Diabetic Sprague Dawley rat humerus head. Anat Cell Biol 2023;56:552-61.
  21. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010;25:1468-86.
  22. Iwaniec UT, Turner RT. Influence of body weight on bone mass, architecture and turnover. J Endocrinol 2016;230:R115-30.
  23. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone 1993;14:595-608.
  24. Tyrovola JB. The "mechanostat theory" of frost and the OPG/ RANKL/RANK system. J Cell Biochem 2015;116:2724-9.
  25. Uppuganti S, Granke M, Makowski AJ, Does MD, Nyman JS. Age-related changes in the fracture resistance of male Fischer F344 rat bone. Bone 2016;83:220-32.