DOI QR코드

DOI QR Code

Developing Stem Volume Table of Pinus thunbergii Parl. in Southern Region Based on Comparison of Major Taper Equations

주요 수간곡선식 비교에 따른 남부지역 곰솔 수간재적표 개발

  • Hyun-Soo Kim (Division of Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Su-Young Jung (Division of Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science) ;
  • Kwang-Soo, Lee (Division of Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science)
  • 김현수 (국립산림과학원 난대.아열대산림연구소) ;
  • 정수영 (국립산림과학원 난대.아열대산림연구소) ;
  • 이광수 (국립산림과학원 난대.아열대산림연구소)
  • Received : 2024.04.12
  • Accepted : 2024.06.24
  • Published : 2024.07.31

Abstract

This study was carried out for the purpose of selecting the most appropriate taper equation for the actual stands of Pinus thunbergii in the southern coastal region of Korea and then developing a stem volume table to provide basic data for rational management. To develop a volume table of Pinus thunbergii in this region of Korea, 59 sample trees with various diameter distributions were selected and stem analysis was performed. As a result of stem analysis, two trees with abnormal diameter and height growth as the age increased were rejected, and 57 trees were analyzed. To develop the taper equation, seven major variable exponential equations were used, including Kozak 1988, 1994, 2001, 2002, Bi 2000, Muhairwe 1999, and Sharma and Parton 2009. As a result of parameter estimation and statistical verification, the Kozak 1988 model showed the highest goodness of fit with Fit I (Fit Index), RMSE 1.5620, Bias 0.0031, and MAD 1.0784. The diameter of each 10cm stem ridge for the selected model was estimated, and a stem volume table was produced using the mensuration of division (end area formula) using the Smalian equation. As a result of two-sample T-test for volume table of this study and current yield table, the volume for this study was found to be significantly larger at all observation points (p < 0.001). Even for the same tree species, it is judged that differentiated volume tables are needed for each growth environment characteristic.

Keywords

Acknowledgement

본 연구는 산림청 일반연구사업(과제번호: SC0600-2021-01)의 일부 지원으로 이루어진 것입니다.

References

  1. Bi, H., 2000, Trigonometric variable-form taper equations for Australian eucalyptus, For. Sci., 46, 397-409.
  2. Borders, E., Bailey, L., 2000, Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors, For. Sci., 46, 1-12.
  3. Cao, Q. V., Burkhart, H. E., Max, T. A., 1980, Evaluation of two methods for cubic-volume prediction of loblolly pine to any merchantable limit, For. Sci., 26, 71-80.
  4. Demaerschalk, J., Kozak, A., 1977, The whole-bole system: A Conditioned dual-equation system for precise prediction of tree profiles, Can. J. For. Res., 7, 488-497.
  5. Heinzel, J., Huber, M. O., 2017, Detecting tree stems from volumetric TLS data in forest environments with rich understory, Remote Sensing, 9(1), 9.
  6. Kang, J. T., Moon, H. S., Son, Y. M., Ahn, K. W., 2015, An Estimation on the stem volume of Cryptomeria japonica in Jeju using Kozak's stem taper model, Journal of Korean Island, 27(3), 145-160.
  7. Kim, H. S., Jung, S. Y., Lee, K. S., 2022, Evaluation of major taper equation models for developing a stem volume table of Cryptomeria japonica in Jeju Island, Journal of Environmental Science International, 31(11), 941-950.
  8. Kim, J. U., Kil, B. S., 1983, A Study on the distribution of Pinus thunbergii in the Korean peninsula, Kor. J. Eco., 6, 45-54
  9. Kim, J. U., Yim, Y. J., Kim, B. S., 1986, Changes of site index and production of black pine (Pinus thunbergii Parl.) stand from coast to inland, Korean Journal of Ecology, 9, 123-133.
  10. Kim, S. H., 2003, Ecological characteristics of Japanese black pine (Pinus thunbergii) forests of east coastal sand dunes in Korea, Ph.D. Thesis, Seoul Nat. Univ., Korea.
  11. Kim, Y. S., Ko, S. C., Choi, B. H., 1981, Distribution atlas of plants of Korea, Kor. J. Pl. Taxon., 11, 53-76.
  12. Kozak, A., 1988, A Variable-exponent taper equation, Can. J. For. Res., 18, 1363-1368.
  13. Kozak, A., 1997, Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can. J. For. Res., 27(5), 619-629.
  14. Kozak, A., 2004, My last words on taper equations, Forestry Chronicle, 80(4), 507-515.
  15. Kozak, A., Munro, D., Smith, J., 1969, Taper functions and their application in forest inventory, Forestry Chronicle, 45, 278-283.
  16. Lee, D. S., Seo, Y. W., Lee, J. H., Choi, J. K., 2017, Estimation and validation of taper equations for three major coniferous species in Gangwon and North Gyeongsang provinces of South Korea, Journal of Forest and Environmental Science, 33(4), 315-321.
  17. Li, R., Weiskittel, A. R., 2010, Comparison of model forms for estimating stem taper and volume in the primary conifer species of the North American Acadian Region, Journal of Forest Science, 67, 302.
  18. Luoma, V., Saarinen, N., Kankare, V., Tanhuanpaa, T., Kaartinen, H., Kukko, A., Holopainen, M., Hyyppa, J., Vastaranta, M., 2019, Examining changes in stem taper and volume growth with two-date 3D point clouds, Forests, 10, 382.
  19. Max, T. A., Burkhart, H. E., 1976, Segmented polynomial regression applied to taper equations, For. Sci., 22, 283-289.
  20. McTague, J. P., Weiskittel, A., 2021, Evolution, history, and use of stem taper equations: A Review of their development, application, and implementation, Can. J. For. Res., 51, 210-235
  21. Muhairwe, C. K., 1999, Taper equations for Eucalyptus pilularis and Eucalyptus grandis for the north coast in New South Wales, Australia, Forest Ecological Management, 113, 251-269.
  22. National Institute of Forest Science, 2020, Stand volume・biomass and stand yield table, Seoul, Korea, 361.
  23. Newnham, R., 1992, Variable-form taper functions for four alberta tree species, Can. J. For. Res., 22, 210-223.
  24. Ormerod, D. A., 1973, Simple bole model, Forestry Chronicle, 49, 136-138.
  25. Reed, D. D., Byrne, J. C., 1985, A Simple, variable form volume estimation system, Forestry Chronicle, 61, 87-90.
  26. Rojo, A., Perales, X., Sanchez-Rodriguez, F., Alvarez-Gonzalez, J.G., Gadow, K., 2005, Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain), Eur. J. For. Res., 124(3), 177-186.
  27. Saarinen, N., Kankare, V., Vastaranta, M., Luoma, V., Pyorala, J., Tanhuanpaa, T., Liang , X., Kaartinen, H., Kukko, A., Jaakkola, A., Yu, Xiaowei., Holopainen, M. and Hyyppa, J., 2017, Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees, Journal of Photogrammetry and Remote Sensing, 123, 140-158.
  28. Seo, Y. O., Jung, S. C., Won, H. K., Lee, Y. G., 2015, Taper equation and stem volume table of Cryptomeria japonica in Jeju experimental forests, Journal of Agriculture & Life Science, 49(1), 71-77.
  29. Sharma, M., Parton J., 2009, Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis, Forest Science, 55, 268-282.
  30. Sharma, M., Zhang, S. Y., 2004, Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada, For. Ecol. Manag., 198, 39-53.
  31. Sharma, M., Oderwald, R. G., 2001, Dimensionally compatible volume and taper equations, Can. J. For. Res., 31, 797-803.
  32. Tang, C., Wang, C. S., Pang, S. J., Zhao, Z. G., Guo, J. J., Lei, Y. C., Zeng J., 2017, Stem taper equations for Betula alnoides in South China, Journal of Tropical Forest Science, 29(1), 80-92.
  33. Thomas, S. C., Martin, A. R., Mycroft, E. E., 2015, Tropical trees in a wind-exposed island ecosystem: Height-diameter allometry and size at onset of maturity, Journal of Ecology, 103, 594-605.