DOI QR코드

DOI QR Code

Brief Review on Measurement Devices for the Plasma Diagnosis of Satellite Electric Propulsion Systems

인공위성 전기추진기관의 상태 진단을 위한 플라즈마 측정 장비 구성에 관한 고찰

  • Jingeon Kim (Department of Mechanical Engineering, Hanbat National University) ;
  • Seungmin Guk (Department of Mechanical Engineering, Hanbat National University) ;
  • Minwoo Lee (Department of Mechanical Engineering, Hanbat National University)
  • 김진건 (국립한밭대학교 기계공학과) ;
  • 국승민 (국립한밭대학교 기계공학과) ;
  • 이민우 (국립한밭대학교 기계공학과)
  • Received : 2024.06.20
  • Accepted : 2024.07.05
  • Published : 2024.07.31

Abstract

Electric propulsion systems, including electrothermal, electrostatic, and electromagnetic thrusters, are promising systems for producing thrust from satellites. These systems generally operate under vacuum plasma conditions and exhibit high specific impulses and thrust-to-weight ratios. Despite their high efficiencies, electric propulsion systems are susceptible to performance variations due to physical factors such as plasma instabilities, which require an accurate diagnosis of their status during operation. In this study, we review various measurement systems adopted to diagnose electric propulsion systems operating under vacuum conditions. Specifically, we review electrical, optical, and other methods that can directly or indirectly measure the status of a thruster, with a particular focus on Hall effect thrusters. The system configurations and fundamental mechanisms of the different measurement systems are described based on case studies of the diagnosis of propulsion systems. We anticipate that this study will contribute to the efficient development and safe operation of electric propulsion systems for use in artificial satellites.

Keywords

Acknowledgement

본 논문은 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004).

References

  1. D. Lev, R. M. Myers, K. M. Lemmer, J. Kolbeck, H. Koizumi, and K. Polzin, "The technological and commercial expansion of electric propulsion", Acta Astronaut., Vol. 159, pp. 213-227, 2019.
  2. D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Hoboken, John Wiley & Sons, NJ, pp. 1-481, 2008.
  3. H. Kim, S.-K. Kim, and S.-H. Won, "Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas", J. Korean Soc. Propuls. Eng., Vol. 23, No. 6, pp. 95-108, 2019.
  4. M. Keidar, T. Zhuang, A. Shashurin, G. Teel, D. Chiu, J. Lukas, S. Haque, and L. Brieda, "Electric propulsion for small satellites", Plasma Phys. Control. Fusion, Vol. 57, No. 1, pp. 014005(1)-014005(11), 2014.
  5. H. R. Kaufman and R. S. Robinson, "Electric thruster performance for orbit raising and maneuvering", J. Spacecr. Rockets, Vol. 21, No. 2, pp. 180-186, 1984.
  6. M. Touzeau, M. Prioul, S. Roche, N. Gascon, C. Perot, F. Darnon, S. Bechu, C. Philippe-Kadlec, L. Magne, P. Lasgorceix, D. Pagnon, A. Bouchoule, and M. Dudeck, "Plasma diagnostic systems for Hall-effect plasma thrusters", Plasma Phys. Control. Fusion, Vol. 42, No. 12B, pp. B323-339, 2000.
  7. E. Han, D. Kim, J. Lee, Y. Kim, and Minwoo Lee, "Analysis of the Hall-Effect Thruster Discharge Blowoff Using Complexity-Entropy Causality Plane", J. Korean Soc. Aeronaut. Space Sci., Vol. 51, No. 4, pp. 263-271, 2023.
  8. M. Lee, D. Kim, J. Lee, Y. Kim and M. Yi, "A data-driven approach for analyzing Hall thruster discharge instability leading to plasma blowoff", Acta Astronaut., Vol. 206, pp. 1-8, 2023.
  9. B. E. Cherrington, "The use of electrostatic probes for plasma diagnostics-A review", Plasma Chem. Plasma Process., Vol. 2, pp. 113-140, 1982.
  10. M. R. Nakles and W. A. Hargus Jr., "Background pressure effects on ion velocity distribution within a medium-power Hall thruster", J. Propuls. Power, Vol. 27, No. 4, pp. 737- 743, 2011.
  11. R. B. Lobbia and B. E. Beal, "Recommended Practice for Use of Langmuir Probes in Electric Propulsion Testing", J. Propuls. Power, Vol. 33, No. 3, pp. 566-581, 2017.
  12. J. Linnell and A. Gallimore, "Internal Langmuir probe mapping of a Hall thruster with Xenon and Krypton propellant", Proc. of 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp. 4470(1)-4470(18), Sacramento, USA, 2006.
  13. R. Eckman, L. Byrne, N. A. Gatsonis, and E. J. Pencil, "Triple Langmuir probe measurements in the plume of a pulsed plasma thruster", J. Propuls. Power, Vol. 17, No. 4, pp. 762-771, 2001.
  14. C.-Z. Cheng and K. Oyama, An Introduction to Space Instrumentation, Tokyo, Terrapub, JP, pp. 1-240, 2013.
  15. I. D. Sudit and R. C. Woods, "A study of the accuracy of various Langmuir probe theories", J. Appl. Phys., Vol. 76, No. 8, pp. 4488-4498, 1994.
  16. K. Oyama, "DC Langmuir probe for measurement of space plasma: A brief review", J. Astron. Space Sci., Vol. 32, No. 3, pp. 167-180, 2015.
  17. L. Oksuz, F. Soberon, and A. R. Ellingboe, "Analysis of uncompensated Langmuir probe characteristics in radio-frequency discharges revisited", J. Appl. Phys., Vol. 99, No. 1, p. 013304, 2006.
  18. B. Reid and A. Gallimore, "Langmuir probe measurements in the discharge channel of a 6-kW Hall thruster", Proc. of 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 4920, Hartford, USA, 2008.
  19. R. Shastry, W. Huang, T. W. Haag, and H. Kamhawi, "Langmuir Probe Measurements Within the Discharge Channel of the 20-kW NASA-300M and NASA-300MS Hall Thrusters", Proc. of International Electric Propulsion Conference (IEPC), pp. 1-24, Washington, D.C., USA, 2013.
  20. T. Andreussi, M. M. Saravia, and M. Andrenucci, "Plasma characterization in Hall thrusters by Langmuir probes", J. Instrum., Vol. 14, pp. C05011(1)-C05011(11), 2019.
  21. M. Tichy, A. Petin, P. Kudrna, M. Horky, and S. Mazouffre, "Electron energy distribution function in a low-power Hall thruster discharge and near-field plume", Phys. Plasmas, Vol. 25, No. 6, p. 061205, 2018.
  22. M. Keidar and I. D. Boyd, "Effect of a magnetic field on the plasma plume from Hall thrusters", J. Appl. Phys., Vol. 86, No. 9, pp. 4786-4791, 1999.
  23. Y. Azziz, "Experimental and theoretical characterization of a Hall thruster plume", Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2007.
  24. D. L. Brown and A. D. Gallimore, "Evaluation of ion collection area in Faraday probes", Rev. Sci. Instrum., Vol. 81, No. 6, pp. 063504(1)-063504(11), 2010.
  25. D. L. Brown, M. L. R. Walker, J. Szabo, W. Huang, and J. E. Foster, "Recommended practice for use of Faraday probes in electric propulsion testing", J. Propuls. Power, Vol. 33, No. 3, pp. 582-613, 2017.
  26. Z. Zhang, Z. Zhang, S. Xu, W. Y. L. Ling, J. Ren, and H. Tang, "Three-dimensional measurement of a stationary plasma plume with a Faraday probe array", Aerosp. Sci. Technol., Vol. 110, p. 106480, 2021.
  27. T. Hallouin and S. Mazouffre, "Far-Field Plume Characterization of a 100-W Class Hall Thruster", Aerospace, Vol. 7, No. 5, pp. 58(1)-58(21), 2020.
  28. W. Huang, R. Shastry, G. C. Soulas, and H. Kamhawi, "Fairfield Plume Measurement and Analysis on the NASA-300M and NASA-300MS", Proc. of International Electric Propulsion Conference (IEPC), pp. 1-35, Washington, D.C., USA, 2013.
  29. S. T. Lai and C. Miller, "Retarding potential analyzer: Principles, designs, and space applications", AIP Adv., Vol. 10, No. 9, pp. 095324(1)-095324(9), 2020.
  30. L. Fanelli, S. Noel, G. D. Earle, C. Fish, R. L. Davidson, R. V. Robertson, P. Marquis, V. Garg, N. Somasundaram, L. Kordella, and P. Kennedy, "A versatile retarding potential analyzer for nano-satellite platforms", Rev. Sci. Instrum., Vol. 86, No. 12, pp. 124501(1)-124501(13), 2015.
  31. F. Valsaque, G. Manfredi, J. P. Gunn, and E. Gauthier, "Kinetic simulations of ion temperature measurements from retarding field analyzers", Phys. Plasmas, Vol. 9, No. 5, pp. 1806-1814, 2002.
  32. L. L. Su, P. J. Roberts, T. Gill, W. Hurley, T. A. Marks, C. L. Sercel, M. Allen, C. B. Whittaker, M. Byrne, Z. Brown, E. Viges, and B. Jorns, "Operation and Performance of a Magnetically Shielded Hall Thruster at Ultrahigh Current Densities on Xenon and Krypton", Proc. of AIAA SCITECH 2023 Forum, pp. 0842(1)-0842(32), National Harbor, USA, 2023.
  33. J. Ekholm and W. Hargus, "E x B measurements of a 200 W xenon Hall thruster", Proc. of 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp. 4405(1)-4405(10), Tucson, USA, 2005.
  34. Y. Wang, X. Zhu, R. Zou, S. Yan, J. Jia, Z. Ning, and D. Yu, "A novel optical emission spectroscopy method for diagnostics of contribution of different ionization mechanisms and flux of ions in different valences in discharge channel of a Hall Thruster", Chinese J. Aeronaut., Vol. 37, No. 4, pp. 294-307, 2024.
  35. J. W. M. Lim, I. Levchenko, S. Huang, L. Xu, R. Z. W. Sim, J. S. Yee, G.-C. Potrivitu, Y. Sun, K. Bazaka, X. Wen, J. Gao and S. Xu, "Plasma parameters and discharge characteristics of lab-based krypton-propelled miniaturized Hall thruster", Plasma Sources Sci. Technol., Vol. 28, No. 6, p. 064003, 2019.
  36. T. Belmonte, C. Noel, T. Gries, J. Martin, and G. Henrion, "Theoretical background of optical emission spectroscopy for analysis of atmospheric pressure plasmas", Plasma Sources Sci. Technol., Vol. 24, No. 6, p. 064003, 2015.
  37. Y.-F. Wang and X.-M. Zhu, "An optical emission spectroscopy method for determining the electron temperature and density in low-temperature xenon plasma by using a collisional-radiative model considering the hyperfine structure of emission line into metastable state", Spectrochim. Acta Part B At. Spectrosc., Vol. 208, p. 106777, 2023.
  38. R. P. Lucht, "Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics", in Laser spectroscopy and its applications, R. W. Solarz, and J. A. Paisner, Eds. CRC Press, Boca Raton, pp. 623-676, 2017.
  39. R. J. Cedolin, W. A. Hargus Jr., P. V. Storm, R. K. Hanson, and M. A. Cappelli, "Laser-induced fluorescence study of a xenon Hall thruster", Appl. Phys. B, Vol. 65, pp. 459-469, 1997.
  40. H. Kang, M. Lee, and K. T. Kim, "Measurements of self-excited instabilities and nitrogen oxides emissions in a multi-element lean-premixed hydrogen/methane/air flame ensemble", Proc. Combust. Inst., Vol. 39, No. 4, pp. 4721-4729, 2023.
  41. M. Kwasny and A. Bombalska, "Applications of laser-induced fluorescence in medicine", Sensors, Vol. 22, No. 8, pp. 2956(1)-2956(12), 2022.
  42. S. Mazouffre, "Laser-induced fluorescence diagnostics of the cross-field discharge of Hall thrusters", Plasma Sources Sci. Technol., Vol. 22, No. 1, pp. 013001(1)-013001(22), 2012.
  43. R. Spektor and W. G. Tighe, "Laser induced fluorescence measurements in a hall thruster as a function of background pressure", Proc. of 52nd AIAA/SAE/ASEE Joint Propulsion Conference, pp. 4624(1)-4624(7), Salt Lake City, USA, 2016.
  44. G. Doh, H. Kim, D. Lee, S. Park, S. Mazouffre, and W. Choe, "Structure of the ion acceleration region in cylindrical Hall thruster plasmas", J. Phys. D Appl. Phys., Vol. 55, No. 22, pp. 225204(1)-225204(15), 2022.
  45. I. Romadanov, Y. Raitses, A. Diallo, K. Hara, I. D. Kaganovich, and A. Smolyakov, "On limitations of laser-induced fluorescence diagnostics for xenon ion velocity distribution function measurements in Hall thrusters", Phys. Plasmas, Vol. 25, No. 3, pp. 033501(1)-033501(7), 2018.
  46. M. Lee, K. T. Kim, and J. Park, "A numerically efficient output-only system-identification framework for stochastically forced self-sustained oscillators", Probabilistic Eng. Mech., Vol. 74, pp. 103516(1)-103516(17), 2023.
  47. H. Son and M. Lee, "Continuous probabilistic solution to the transient self-oscillation under stochastic forcing: a PINN approach", J. Mech. Sci. Technol., Vol. 37, No. 8, pp. 3911-3918, 2023.
  48. L. B. King and A. D. Gallimore, "Gridded retarding pressure sensor for ion and neutral particle analysis in flowing plasmas", Rev. Sci. Instrum., Vol. 68, No. 2, pp. 1183-1188, 1997.
  49. S. Shinohara, D. Kuwahara, Y. Ishigami, H. Horita, and S. Nakanishi, "Extremely small-diameter, high-density, radio frequency, plasma sources and central gas feeding for next-generation electrodeless plasma thrusters", Rev. Sci. Instrum., Vol. 91, No. 7, pp. 073507(1)-073507(13), 2020.