Acknowledgement
저자들은 ALD 공정에 도움을 주신 부산대학교 재료공학부 권세훈 교수님께 감사를 표합니다.
References
- Z. Xuan and F. Aflatouni, "Integrated coherent optical receiver with feed-forward carrier recovery," Opt. Express 28, 16073-16088 (2020). https://doi.org/10.1364/OE.389865
- L. A. Valenzuela, Y. Xia, A. Maharry, H. Andrade, C. L. Schow, and J. F. Buckwalter, "A 50-GBaud QPSK optical receiver with a phase/frequency detector for energy-efficient intra-data center interconnects," IEEE Open J. Solid-State Circuits Soc. 2, 50-60 (2022). https://doi.org/10.1109/OJSSCS.2022.3150291
- D. Liu, S. Sun, X. Yin, B. Sun, J. Sun, Y. Liu, W. Li, N. Zhu, and M. Li, "Large-capacity and low-loss integrated optical buffer," Opt. Express 27, 11585-11593 (2019). https://doi.org/10.1364/OE.27.011585
- B. G. Lee and N. Dupuis, "Silicon photonic switch fabrics: Technology and architecture," J. Light. Technol. 37, 6-20 (2019). https://doi.org/10.1109/JLT.2018.2876828
- T. Alexoudi, G. T. Kanellos, and N. Pleros, "Optical RAM and integrated optical memories: A survey," Light Sci. Appl. 9, 91 (2020).
- D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Lange, W. Freude, and C. Koos, "Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics," Light Sci. Appl. 10, 64 (2021).
- D. Petrovszki, S. Valkai, E. Gora, M. Tanner, A. Banyai, P. Furjes, and A. Der, "An integrated electro-optical biosensor system for rapid, low-cost detection of bacteria," Microelectron. Eng. 239-240, 111523 (2021).
- C.-P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, "A review and perspective on optical phased array for automotive LiDAR," IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
- C. V. Poulton, "Integrated LIDAR with optical phased arrays in silicon photonics," M.S. Thesis, Massachusetts Institute of Technology, USA (2016).
- K. Bohnert, A. Frank, L. Yang, X. Gu, and G. M. Muller, "Polarimetric fiber-optic current sensor with integrated-optic polarization splitter," J. Light. Technol. 37, 3672-3678 (2019). https://doi.org/10.1109/JLT.2019.2919387
- K. M. Yoo, J. Midkiff, A. Rostamian, C.-J. Chung, H. Dalir, and R. T. Chen, "InGaAs membrane waveguide: A promising platform for monolithic integrated mid-infrared optical gas sensor," ACS Sens. 5, 861-869 (2020). https://doi.org/10.1021/acssensors.0c00180
- X. Chen, G. Raybon, D. Che, J. Cho, and K. W. Kim, "Transmission of 200-GBaud PDM probabilistically shaped 64-QAM signals modulated via a 100-GHz thin-film LiNbO3 I/Q modulator," in Optical Fiber Communication Conference (Optica Publishing Group, 2021), paper F3C.5.
- K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, "Low-insertion-loss and power-efficient 32×32 silicon photonics switch with extremely high-Δ silica PLC connector," J. Light. Technol. 37, 116-122 (2019). https://doi.org/10.1109/JLT.2018.2867575
- Q. Q. Song, Z. F. Hu, and K. X. Chen, "Scalable and reconfigurable true time delay line based on an ultra-low-loss silica waveguide," Appl. Opt. 57, 4434-4439 (2018). https://doi.org/10.1364/AO.57.004434
- S.-M. Kim, E.-S. Lee, K.-W. Chun, J. Jin, and M.-C. Oh, "Compact solid-state optical phased array beam scanners based on polymeric photonic integrated circuits," Sci. Rep. 11, 10576 (2021).
- T.-H. Park, S.-M. Kim, E.-S. Lee, and M.-C. Oh, "Polymer waveguide tunable transceiver for photonic front-end in the 5G wireless network," Photonics Res. 9, 181-186 (2021). https://doi.org/10.1364/PRJ.411137
- S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, "Bias-free optical current sensors based on quadrature interferometric integrated optics," Opt. Express 26, 31599-31606 (2018). https://doi.org/10.1364/OE.26.031599
- M. Rakowski, C. Meagher, K. Nummy, A. Aboketaf, J. Ayala, Y. Bian, B. Harris, K. Mclean, K. McStay, A. Sahin, L. Medina, B. Peng, Z. Sowinski, A. Stricker, T. Houghton, C. Hedges, K. Giewont, A. Jacob, T. Letavic, D. Riggs, A. Yu, and J. Pellerin, "45nm CMOS-Silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects," in Optical Fiber Communication Conference Proc. Optical Fiber Communication Conference (Optica Publishing Group, 2020), paper T3H.3.
- Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, "Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications," Adv. Mater. Technol. 5, 1901153 (2020).
- C. Huang, S. Fujisawa, T. F. de Lima, A. N. Tait, E. C. Blow, Y. Tian, S. Bilodeau, A. Jha, F. Yaman, H.-T. Peng, H. G. Batshon, B. J. Shastri, Y. Inada, T. Wang, and P. R. Prucna, "A silicon photonic-electronic neural network for fibre nonlinearity compensation," Nat. Electron. 4, 837-844 (2021). https://doi.org/10.1038/s41928-021-00661-2
- J. Zhou, D. Al Husseini, J. Li, Z. Lin, S. Sukhishvili, G. L. Cote, R. Gutierrez-Osuna, and P. T. Lin, "Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors," Sci. Rep. 12, 5572 (2022).
- K. Gallacher, P. F. Griffin, E. Riis, M. Sorel, and D. J. Paul, "Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems," APL Photonics 7, 046101 (2022).
- A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, "Flexible OLED displays using plastic substrates," IEEE J. Sel. Top. Quantum Electron. 10, 107-114 (2004). https://doi.org/10.1109/JSTQE.2004.824112
- S. Kim, H. J. Kwon, S. Lee, H. Shim, Y. Chun, W. Choi, J. Kwack, D. Han, M. Song, S. Kim, S. Mohammadi, I. S. Kee, and S. Y. Lee, "Low-power flexible organic light-emitting diode display device," Adv. Mater. 23, 3511-3516 (2011). https://doi.org/10.1002/adma.201101066
- J. Liu, M. Gao, J. Kim, Z. Zhou, D. S. Chung, H. Yin, and L. Ye, "Challenges and recent advances in photodiodes-based organic photodetectors," Mater. Today 51, 475-503 (2021). https://doi.org/10.1016/j.mattod.2021.08.004
- Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, "Polymer waveguide variable optical attenuator and its reliability," Opt. Commun. 242, 533-540 (2004). https://doi.org/10.1016/j.optcom.2004.09.030