DOI QR코드

DOI QR Code

Increased Efficiency of Long-distance Optical Energy Transmission Based on Super-Gaussian

수퍼 가우시안 빔을 이용한 레이저 전력 전송 효율 개선

  • Jeongkyun Na (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Byungho Kim (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Changsu Jun (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Hyesun Cha (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Yoonchan Jeong (Department of Electrical and Computer Engineering, Seoul National University)
  • 나정균 (서울대학교 전기정보공학부) ;
  • 김병호 (서울대학교 전기정보공학부) ;
  • 전창수 (광주과학기술원 고등광기술연구소) ;
  • 차혜선 (서울대학교 전기정보공학부) ;
  • 정윤찬 (서울대학교 전기정보공학부)
  • Received : 2024.05.07
  • Accepted : 2024.06.17
  • Published : 2024.08.25

Abstract

One of the key factors in research regarding long-distance laser beam propagation, as in free-space optical communication or laser power transmission, is the transmission efficiency of the laser beam. As a way to improve efficiency, we perform extensive numerical simulations of the effect of modifying the laser beam's profile, especially replacing the fundamental Gaussian beam with a super-Gaussian beam. Numerical simulations of the transmitted power in the ideal diffraction-limited beam diameter determined by the optical system of the transmitter, after about 1-km propagation, reveal that the second-order super-Gaussian beam can yield superior performance to that of the fundamental Gaussian beam, in both single-channel and coherently combined multi-channel laser transmitters. The improvement of the transmission efficiency for a 1-km propagation distance when using a second-order super-Gaussian beam, in comparison with a fundamental Gaussian beam, is estimated at over 1.2% in the singlechannel laser transmitter, and over 4.2% and over 4.6% in coherently combined 3- and 7-channel laser transmitters, respectively. For a range of the propagation distance varying from 750 to 1,250 m, the improvement in transmission efficiency by use of the second-order super-Gaussian beam is estimated at over 1.2% in the single-channel laser transmitter, and over 4.1% and over 4.0% in the coherently combined 3- and 7-channel laser transmitters, respectively. These simulation results will pave the way for future advances in the generation of higher-order super-Gaussian beams and the development of long-distance optical energy-transfer technology.

자유 공간 광 통신 또는 레이저 전력 전송과 같은 장거리 레이저 빔 전파 연구의 핵심 요소 중 하나는 레이저 빔의 전송 효율이다. 본 논문에서는 레이저 에너지 전송의 효율을 개선하기 위해 레이저 빔의 공간적 분포를 변형하는 방법을 제안하였으며, 특히 수퍼 가우시안 빔을 대상으로 수치 해석을 진행해 그 유효성을 확인하였다. 송신기의 광학 시스템에 의해 결정된 회절 한계 반지름 이내로 수신되는 전력의 양을 기준으로, 2차 수퍼 가우시안 레이저 빔이 1 km 거리를 전파할 때 단일 채널과 다중 채널에서 모두 전송 효율이 개선되는 것을 확인하였다. 또한 1 km 전파거리를 전제로 기본 가우시안 빔과 2차 수퍼 가우시안 빔을 사용하는 상황을 비교하였을 때, 전송 효율 개선률이 단일 채널 레이저에서 1.2% 이상, 3채널 및 7채널에서는 각각 4,2% 및 4.6% 이상이라는 결과를 얻었다. 레이저 빔의 전파거리가 750 m에서 1,250 m 사이인 경우, 2차 수퍼 가우시안 빔의 전송효율 개선률은 단일, 3채널, 7채널일 때 각각 1.2%, 4.1%, 4.0% 이상으로 전송 효율의 우위가 유지되었다.

Keywords

Acknowledgement

국방과학연구소(Grant no. UD210019ID); BK21Four Project.

References

  1. A. U. Chaudhry and H. Yanikomeroglu, "Free space optics for next-generation satellite networks," IEEE Consum. Electron. Mag. 10, 21-30 (2020).
  2. V. W. S. Chan, "Free-space optical communications," J. Light. Technol. 24, 4750-4762 (2006). https://doi.org/10.1109/JLT.2006.885252
  3. Y. Zheng, G. Zhang, Z. Huan, Y. Zhang, G. Yuan, Q. Li, G. Ding, Z. Lv, W. Ni, Y. Shao, X. Liu, and J. Zu, "Wireless laser power transmission: Recent progress and future challenges," Space Sol. Power Wirel. Transm. 1, 17-26 (2024).
  4. P. K. Sahoo and A. K. Yadav, "A comprehensive road map of modern communication through free-space optics," J. Opt. Commun. 44, s1497-s1513 (2023). https://doi.org/10.1515/joc-2020-0238
  5. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, "Entanglement-based quantum communication over 144km," Nat. Phys. 3, 481-486 (2007). https://doi.org/10.1038/nphys629
  6. J. Yin, Y. H. Li, S. K. Liao, M. Yang, Y. Cao, L. Zhang, J. G. Ren, W. Q. Cai, W. Y. Liu, S. L. Li, R. Shu, Y. M. Huang, L. Deng, L. Li, Q. Zhang, N. L. Liu, Y. A. Chen, C. Y. Lu, X. B. Wang, F. Xu, J. Y. Wang, C. Z. Peng, A. K. Ekert, and J. W. Pan, "Entanglement-based secure quantum cryptography over 1,120 kilometres," Nature 582, 501-505 (2020). https://doi.org/10.1038/s41586-020-2401-y
  7. S. Fafard and D. P. Masson, "74.7% efficient GaAs-based laser power converters at 808 nm at 150 K," Photonics 9, 579 (2022).
  8. N. Kawashima, K. Takeda, and K. Yabe, "Application of the laser energy transmission technology to drive a small airplane," Chin. Opt. Lett. 5, S109-S110 (2007).
  9. L. Summerer and P. Oisin, "Concepts for wireless energy transmission via laser," in Proc. 1st International Conference on Space Optical Systems and Applications (Miraikan, Tokyo, Japan, Feb. 4-6, 2009), pp. ICSOS2009-18.
  10. R. Li, H. Wu, H. Xiao, J. Leng, and P. Zhou, "More than 5 kW counter tandem pumped fiber amplifier with near single-mode beam quality," Opt. Laser Technol. 153, 108204 (2022).
  11. E. Stiles, "New developments in IPG fiber laser technology," in Proc. 5th International Workshop on Fiber Lasers (Dresden, Germany, Sep. 30-Oct. 1, 2009).
  12. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567- 577 (2005). https://doi.org/10.1109/JSTQE.2005.850241
  13. B. He, Q. Lou, J. Zhou, J. Dong, Y. Wei, D. Xue, Y. Qi, Z. Su, L. Li, and F. Zhang, "High power coherent beam combination from two fiber lasers," Opt. Express 14, 2721-2726 (2006). https://doi.org/10.1364/OE.14.002721
  14. T. M. Shay, "Theory of electronically phased coherent beam combination without a reference beam," Opt. Express 14, 12188-12195 (2006). https://doi.org/10.1364/OE.14.012188
  15. H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, and P. Zhou, "First experimental demonstration of coherent beam combining of more than 100 beams," Photonics Res. 8, 1943-1948 (2020). https://doi.org/10.1364/PRJ.409788
  16. D. Zhi, Z. Zhang, Y. Ma, X. Wang, Z. Chen, W. Wu, P. Zhou, and L. Si, "Realization of large energy proportion in the central lobe by coherent beam combination based on conformal projection system," Sci. Rep. 7, 2199 (2017).
  17. J. K. Jabczynski and P. Gontar, "Impact of atmospheric turbulence on coherent beam combining for laser weapon systems," Def. Technol. 17, 1160-1167 (2021). https://doi.org/10.1016/j.dt.2020.06.021
  18. M. Gerber and T. Graf, "Generation of super-Gaussian modes in Nd:YAG lasers with a graded-phase mirror," IEEE J. Quantum Electron. 40, 741-746 (2004). https://doi.org/10.1109/JQE.2004.828231
  19. S. Ngcobo, K. Ait-Ameur, I. Litvin, A. Hasnaoui, and A. Forbes, "Tuneable Gaussian to flat-top resonator by amplitude beam shaping," Opt. Express 21, 21113-21118 (2013). https://doi.org/10.1364/OE.21.021113
  20. M. Karlsson and D. Anderson, "Super-Gaussian approximation of the fundamental radial mode in nonlinear parabolic-index optical fibers," J. Opt. Soc. Am. B 9, 1558-1562 (1992). https://doi.org/10.1364/JOSAB.9.001558
  21. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company Publishers, 2004).
  22. M. A. Vorontsov and S. L. Lachinova, "Laser beam projection with adaptive array of fiber collimators. I. Basic considerations for analysis," J. Opt. Soc. Am. A 25, 1949-1959 (2008).
  23. A. Parent, M. Morin, and P. Lavigne, "Propagation of superGaussian field distributions," Opt. Quantum Electron. 24, S1071-S1079 (1992). https://doi.org/10.1007/BF01588606