DOI QR코드

DOI QR Code

Development of a link extrapolation-based food web model adapted to Korean stream ecosystems

  • Minyoung Lee (Department of Biological Sciences, Ulsan National Institutes of Science and Technology(UNIST)) ;
  • Yongeun Kim (Ojeong Resilience Institute, Korea University) ;
  • Kijong Cho (Department of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2024.05.29
  • Accepted : 2024.06.20
  • Published : 2024.06.30

Abstract

Food webs have received global attention as next-generation biomonitoring tools; however, it remains challenging because revealing trophic links between species is costly and laborious. Although a link-extrapolation method utilizing published trophic link data can address this difficulty, it has limitations when applied to construct food webs in domestic streams due to the lack of information on endemic species in global literature. Therefore, this study aimed to develop a link extrapolation-based food web model adapted to Korean stream ecosystems. We considered taxonomic similarity of predation and dominance of generalists in aquatic ecosystems, designing taxonomically higher-level matching methods: family matching for all fish (Family), endemic fish (Family-E), endemic fish playing the role of consumers (Family-EC), and resources (Family-ER). By adding the commonly used genus matching method (Genus) to these four matching methods, a total of five matching methods were used to construct 103 domestic food webs. Predictive power of both individual links and food web indices were evaluated by comparing constructed food webs with corresponding empirical food webs. Results showed that, in both evaluations, proposed methods tended to perform better than Genus in a data-poor environment. In particular, Family-E and Family-EC were the most effective matching methods. Our model addressed domestic data scarcity problems when using a link-extrapolation method. It offers opportunities to understand stream ecosystem food webs and may provide novel insights into biomonitoring.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (RS-2023-00240819, 2022R1A6 A3A01087398, and 2021R1A6A1A10045235) and the Ministry of Science and ICT(2019R1A2C1009812).

References

  1. Allesina S. 2011. Predicting trophic relations in ecological networks: a test of the allometric diet breadth model. J. Theor. Biol. 279:161-168. https://doi.org/10.1016/j.jtbi.2010.06.040
  2. Allouche O, A Tsoar and R Kadmon. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43:1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
  3. Baird D and RE Ulanowicz. 1989. The seasonal dynamics of the Chesapeake Bay ecosystem. Ecol. Monogr. 59:329-364. https://doi.org/10.2307/1943071
  4. Barbour MT, J Gerritsen, BD Snyder and JB Stribling. 1999. Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates and Fish. 2nd Edition. EPA 841-B-99-002. Office of Water, United States Environmental Protection Agency. Washington D. C.
  5. Bartley TJ, KS McCann, C Bieg, K Cazelles, M Granados, MM Guzzo, AS MacDougall, TD Tunney and BC McMeans. 2019. Food web rewiring in a changing world. Nat. Ecol. Evol. 3:345-354. https://doi.org/10.1038/s41559-018-0772-3
  6. Bellwood DR, AS Hoey and JH Choat. 2003. Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol. Lett. 6:281-285. https://doi.org/10.1046/j.1461-0248.2003.00432.x
  7. Bersier LF, C Banasek-Richter and MF Cattin. 2002. Quantitative descriptors of food-web matrices. Ecology 83:2394-2407. https://doi.org/10.1890/0012-9658(2002)083[2394:QDOFWM]2.0.CO;2
  8. Chamberlain SA and E Szocs. 2013. taxize: Taxonomic search and retrieval in R. F1000Research. 2:191. https://doi.org/10.12688/f1000research.2-191.v2
  9. Clavel J, R Julliard and V Devictor. 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9:222-228. https://doi.org/10.1890/080216
  10. Cohen JE, T Jonsson and SR Carpenter. 2003. Ecological community description using the food web, species abundance, and body size. Proc. Natl. Acad. Sci. U. S. A. 100:1781-1786. https://doi.org/10.1073/pnas.232715699
  11. Delmas E, M Besson, MH Brice, LA Burkle, GV Dalla Riva, MJ Fortin, D Gravel, PR Guimaraes, DH Hembry, EA Newman, JM Olesen, MM Pires, JD Yeakel and T Poisot. 2019. Analysing ecological networks of species interactions. Biol. Rev. 94:16-36. https://doi.org/10.1111/brv.12433
  12. Eklof A, MR Helmus, M Moore and S Allesina. 2012. Relevance of evolutionary history for food web structure. Proc. R. Soc. B-Biol. Sci. 279:1588-1596. https://doi.org/10.1098/rspb.2011.2149
  13. Fath BD, H Asmus, R Asmus, D Baird, SR Borrett, VN de Jonge, A Ludovisi, N Niquil, UM Scharler, U Schuckel and M Wolff. 2019. Ecological network analysis metrics: The need for an entire ecosystem approach in management and policy. Ocean Coastal Manage. 174:1-14. https://doi.org/10.1016/j.ocecoaman.2019.03.007
  14. Filgueira R, JM Chapman, CD Suski and SJ Cooke. 2016. The influence of watershed land use cover on stream fish diversity and size-at-age of a generalist fish. Ecol. Indic. 60:248-257. https://doi.org/10.1016/j.ecolind.2015.06.006
  15. Goldwasser L and J Roughgarden. 1993. Construction and analysis of a large Caribbean food web. Ecology 74:1216-1233. https://doi.org/10.2307/1940492
  16. Goldwasser L and J Roughgarden. 1997. Sampling effects and the estimation of food-web properties. Ecology 78:41-54. https://doi.org/10.1890/0012-9658(1997)078[0041:SEATEO]2.0.CO;2
  17. Gray C, DH Figueroa, LN Hudson, A Ma, D Perkins and G Woodward. 2015. Joining the dots: An automated method for constructing food webs from compendia of published interactions. Food Webs 5:11-20. https://doi.org/10.1016/j.fooweb.2015.09.001
  18. Grey J, SJ Thackeray, RI Jones and A Shine. 2002. Ferox trout (Salmo trutta) as 'Russian dolls': Complementary gut content and stable isotope analyses of the Loch Ness foodweb. Freshw. Biol. 47:1235-1243. https://doi.org/10.1046/j.1365-2427.2002.00838.x
  19. Guenther CB and A Spacie. 2006. Changes in fish assemblage structure upstream of impoundments within the upper Wabash River basin, Indiana. Trans. Am. Fish. Soc. 135:570-583. https://doi.org/10.1577/T05-031.1
  20. Heberling JM, JT Miller, D Noesgaard, SB Weingart and D Schigel. 2021. Data integration enables global biodiversity synthesis. Proc. Natl. Acad. Sci. U. S. A. 118:e2018093118. https://doi.org/10.1073/pnas.2018093118
  21. Heleno RH, RS Ceia, JA Ramos and J Memmott. 2009. Effects of alien plants on insect abundance and biomass: A food-web approach. Conserv. Biol. 23:410-419. https://doi.org/10.1111/j.1523-1739.2008.01129.x
  22. Kristensen P and J Bogestrand. 1996. Biological assessments of river quality. pp. 77-79. In: Surface Water Quality Monitoring. The European Environment Agency. Copenhagen, Denmark.
  23. Layer K, A Hildrew, D Monteith and G Woodward. 2010. Long-term variation in the littoral food web of an acidified mountain lake. Glob. Change Biol. 16:3133-3143. https://doi.org/10.1111/j.1365-2486.2010.02195.x
  24. Layer K, AG Hildrew and G Woodward. 2013. Grazing and detritivory in 20 stream food webs across a broad pH gradient. Oecologia 171:459-471. https://doi.org/10.1007/s00442-012-2421-x
  25. Layer K, AG Hildrew, GB Jenkins, JO Riede, SJ Rossiter, CR Townsend and G Woodward. 2011. Long-term dynamics of a well-characterised food web: Four decades of acidification and recovery in the Broadstone Stream model system. Adv. Ecol. Res. 44:69-117. https://doi.org/10.1016/B978-0-12-374794-5.00002-X
  26. Mestre F, D Gravel, D Garcia-Callejas, C Pinto-Cruz, MG Matias and MB Araujo. 2022. Disentangling food-web environment relationships: A review with guidelines. Basic Appl. Ecol. 61:102-115. https://doi.org/10.1016/j.baae.2022.03.011
  27. MOE. 2018. Water Quality Monitoring Program. Ministry of Environment. Sejong, Korea.
  28. Morales-Castilla I, MG Matias, D Gravel and MB Araujo. 2015. Inferring biotic interactions from proxies. Trends Ecol. Evol. 30:347-356. https://doi.org/10.1016/j.tree.2015.03.014
  29. Petchey OL, AP Beckerman, JO Riede and PH Warren. 2008. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. U. S. A. 105:4191-4196. https://doi.org/10.1073/pnas.0710672105
  30. Petchey OL, AP Beckerman, JO Riede and PH Warren. 2011. Fit, efficiency, and biology: Some thoughts on judging food web models. J. Theor. Biology. 279:169-171. https://doi.org/10.1016/j.jtbi.2011.03.019
  31. Poelen J, S Gosnell and S Slyusarev. 2017. rglobi: R interface to global biotic interactions. R package version 0.2, 11.
  32. Poelen JH, DS James and CJ Mungall. 2014. Global biotic interactions: An open infrastructure to share and analyze species-interaction datasets. Ecol. Inform. 24:148-159. https://doi.org/10.1016/j.ecoinf.2014.08.005
  33. Poisot T, D Gravel, S Leroux, SA Wood, MJ Fortin, B Baiser, AR Cirtwill, MB Araujo and DB Stouffer. 2016. Synthetic datasets and community tools for the rapid testing of ecological hypotheses. Ecography 39:402-408. https://doi.org/10.1111/ecog.01941
  34. R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/. Accessed June 18, 2024.
  35. Reis ADS, MP Albrecht and SE Bunn. 2020. Food web pathways for fish communities in small tropical streams. Freshw. Biol. 65:893-907. https://doi.org/10.1111/fwb.13471
  36. Son YM and HG Byeon. 2001. Feeding habit of main carnivorous fish (Erhthroculter erythropterus, Opsariichtys uncirostris and Micropterus salmoides) at Lake Paldang. Inst. Bas. Sci. Seowon Univ. 15:61-78.
  37. Terry JCD and OT Lewis. 2020. Finding missing links in interaction networks. Ecology 101:e03047. https://doi.org/10.1002/ecy.3047
  38. Thompson RM, U Brose, JA Dunne, RO Hall, S Hladyz, RL Kitching, ND Martinez, H Rantala, TN Romanuk, DB Stouffer and JM Tylianakis. 2012. Food webs: Reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27:689-697. https://doi.org/10.1016/j.tree.2012.08.005
  39. Tylianakis JM, T Tscharntke and OT Lewis. 2007. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202-205. https://doi.org/10.1038/nature05429
  40. USEPA. 2002. Biological Assessments and Criteria: Crucial Components of Water Quality Programs. EPA 822-F-02-006. Office of Water, United States Environmental Protection Agency. Washington D. C.
  41. Wang S, BK Luo, YJ Qin, LH Su, SD Stewart, TT Wang, JP Tang, BD He, JH Zhang, HJ Lin and Y Yang. 2020. Consumer-diet discrimination of δ13C and δ15N: Source- and feeding-oriented patterns based on gut content analysis in a large subtropical river of China. River Res. Appl. 36:1124-1136. https://doi.org/10.1002/rra.3644
  42. Williams RJ and ND Martinez. 2008. Success and its limits among structural models of complex food webs. J. Anim. Ecol. 77:512-519. https://doi.org/10.1111/j.1365-2656.2008.01362.x
  43. Yoshii K, NG Melnik, OA Timoshkin, NA Bondarenko, PN Anoshko, T Yoshioka and E Wada. 1999. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol. Oceanogr. 44:502-511. https://doi.org/10.4319/lo.1999.44.3.0502