Acknowledgement
This research was supported by the Korea National Open University Research Fund.
References
- Bellego C, Benatia D, and Pape L (2022). Dealing with logs and zeros in regressinon models, Available from: arXiv eprint 2203.11820
- Box GEP and Cox DR (1964). An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26, 211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
- Durbin BP and Rocke DM (2004). Variance-stabilizing transformations for two-color microarrays, Bioinformatics, 20, 660-667. https://doi.org/10.1093/bioinformatics/btg464
- Ekwaru JP and Veugelers PJ (2018). The overlooked importance of constants added in log transformation of independent variables with zero values: A proposed approach for determining an optimal constant, Statistics in Biopharmaceutical Research, 10, 26-29. https://doi.org/10.1080/19466315.2017.1369900
- Feng C, Hongyue W, Lu N, Chen T, He H, Lu Y, and Tu X (2014). Log-transformation and its implications for data analysis, Shanghai Archives of Psychiatry, 26, 105-109.
- Park SY (2023). Zero imputation methods for log-transformation of independent variables, Journal of the Korean Data Analysis Society, 25, 79-90. https://doi.org/10.37727/jkdas.2022.25.1.79
- Rocke DM and Durbin-Johnson B (2001). A model for measurement error for gene expression arrays, Journal of Computational Biology, 8, 557-569. https://doi.org/10.1089/106652701753307485
- Rocke DM and Durbin-Johnson B (2003). Approximate variance-stabilizing transformations for gene-expression microarray data, Bioinformatics, 19, 966-972. https://doi.org/10.1093/bioinformatics/btg107
- Steyerberg EW (2019). Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (2nd ed), Springer, Berlin.