DOI QR코드

DOI QR Code

Determining genetic diversity of prevalent G and P genotype of Bovine Rotavirus A from neonatal calves of Gujarat, India

  • Akash Golaviya (Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University) ;
  • Rafiyuddin Mathakiya (Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University) ;
  • Subhash Jakhesara (Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University) ;
  • Prakash Koringa (Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anand, Kamdhenu University)
  • Received : 2024.04.16
  • Accepted : 2024.05.23
  • Published : 2024.07.31

Abstract

Importance: Neonatal calf diarrhea is a major cause of mortality in newborn calves worldwide, posing a significant challenge in bovine herds. Group A Bovine Rotaviruses (BRVA) are the primary contributors to severe gastroenteritis in calves under two months old. Objectives: This study examined the prevalence and molecular characterization of BRVA in neonatal calves in Gujarat, India. Methods: Sixty-nine diarrheic fecal samples were collected and subjected to various molecular methods of BRVA detection, isolation, and characterization. Results: The latex agglutination test (LAT), electropherotyping (RNA-PAGE), and reverse transcription polymerase chain reaction revealed positivity rates of 39.13%, 20.30%, and 37.70%, respectively. RNA-PAGE identified 11 bands with a 4:2:3:2 migration pattern, indicative of the segmented genome of BRVA. BRVA was successfully isolated from LATpositive samples, with 26 samples exhibiting clear cytopathic effects upon passage in MA-104 cell lines. Genotyping identified G10 as the predominant G genotype, with P[11] genotypes comprising 76.92% of the isolates. The most common G/P combination was G10P[11], highlighting its zoonotic potential. Conclusions and Relevance: These findings underscore the importance of molecular detection and genotyping for effective vaccine development. This study provides crucial insights into the prevalent G and P genotypes of BRVA in Gujarat, India, aiding in the development of targeted control measures.

Keywords

Acknowledgement

The authors are thankful to Dr. Minakshi Prasad, Professor, Department of Animal Biotechnology, College of Veterinary and Animal Sciences, LUVAS, Hisar, India, and Dr. Baldev Gulati, Principal Scientist, National Research Centre on Equines (NRCE), Hisar for providing the valuable MA-104 cell line at greetings for the present research work.

References

  1. Uetake K. Newborn calf welfare: a review focusing on mortality rates. Anim Sci J. 2013;84(2):101-105.  https://doi.org/10.1111/asj.12019
  2. Coura FM, Freitas MD, Ribeiro J, de Leme RA, de Souza C, Alfieri AA, et al. Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, rotavirus, and coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd. Trop Anim Health Prod. 2015;47(1):3-11. https://doi.org/10.1007/s11250-014-0675-5
  3. da Silva Medeiros TN, Lorenzetti E, Alfieri AF, Alfieri AA. Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinated with G6P[1] and G10P[11] genotypes. Arch Virol. 2015;160(2):447-451. https://doi.org/10.1007/s00705-014-2271-4
  4. Gill GS, Kaur S, Dwivedi PN, Gill JP. Comparative prevalence and molecular characterization of group A rotavirus in cow calves of Punjab, India. J of Ani Res. 2017;7(5):927-933. https://doi.org/10.5958/2277-940X.2017.00141.3
  5. Desselberger U. Rotaviruses. Virus Res. 2014;190(1):75-96. https://doi.org/10.1016/j.virusres.2014.06.016
  6. Malik YS, Verma AK, Kumar N, Touil N, Karthik K, Tiwari R, et al. Advances in diagnostic approaches for viral etiologies of diarrhea: from the lab to the field. Front Microbiol. 2019;10(1):1957.
  7. Islam A, Hossain ME, Rostal MK, Ferdous J, Islam A, Hasan R, et al. Epidemiology and molecular characterization of rotavirus A in fruit bats in Bangladesh. EcoHealth. 2020;17(3):398-405. https://doi.org/10.1007/s10393-020-01488-7
  8. Banyai K, Kemenesi G, Budinski I, Foldes F, Zana B, Marton S, et al. Candidate new rotavirus species in Schreiber's bats, Serbia. Infect Genet Evol. 2017;48(1):19-26. https://doi.org/10.1016/j.meegid.2016.12.002
  9. Mihalov-Kovacs E, Gellert A, Marton S, Farkas SL, Feher E, Oldal M, et al. Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis. 2015;21(4):660-663. https://doi.org/10.3201/eid2104.141370
  10. KU Leuven. Rotavirus Classification Working Group, 2nd July, 2021 [Internet]. Leuven: KU Leuven; https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg. Updated 2019, Accessed 2020 Jan 2.
  11. Malik YS, Sharma K, Vaid N, Chakravarti S, Chandrashekar KM, Basera SS, et al. Frequency of group A rotavirus with mixed G and P genotypes in bovines: predominance of G3 genotype and its emergence in combination with G8/G10 types. J Vet Sci. 2012;13(3):271-278. https://doi.org/10.4142/jvs.2012.13.3.271
  12. Gupta V, Nayak A, Swamy M, Shukla P, Singh R. Characterization of bovine rotavirus A by enzyme linked immunosorbent assay and RNA-PAGE. Indian J Vet Pathol. 2019;43(4):235-239. https://doi.org/10.5958/0973-970X.2019.00048.8
  13. Iturriza Gomara M, Wong C, Blome S, Desselberger U, Gray J. Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J Virol. 2002;76(13):6596-6601. https://doi.org/10.1128/JVI.76.13.6596-6601.2002
  14. Gouvea V, Santos N, Timenetsky MC. Identification of bovine and porcine rotavirus G types by PCR. J Clin Microbiol. 1994;32(5):1338-1340. https://doi.org/10.1128/jcm.32.5.1338-1340.1994
  15. Isegawa Y, Nakagomi O, Nakagomi T, Ishida S, Uesugi S, Ueda S. Determination of bovine rotavirus G and P serotypes by polymerase chain reaction. Mol Cell Probes. 1993;7(4):277-284. https://doi.org/10.1006/mcpr.1993.1041
  16. Muhammid H, AL-Shemmari I, Alkabi MAS. Estimating the sensitivity and Specificity of Reverse transcriptase polymerase chain reaction (RT-PCR) with Rota virus latex agglutination test (Virogen Rotatest) in calves suffering from diarrhea in Karbala province. Sci J Med Res. 2017;1(4):110-114. https://doi.org/10.37623/SJMR.2017.1402
  17. Tumlam U, Ingle V, Tembhurne P, Kurkure N, Chaudhari S, Chitambar S, et al. Detection of VP6 gene of rotavirus in feces of diarrhoeic calves, kids, lambs, piglets, pups and human infants by reverse transcriptase-polymerase chain reaction. Ind J Vet Sci Biotechnol. 2018;13(4):12-16.
  18. Dadawala A, Chandel B, Chauhan H, Bhagat A. Molecular detection of bovine rotavirus from North Gujarat, India. Rumin Sci. 2013;2(2):131-137.
  19. Patel J, Mathakiya R, Golaviya A. Detection of bovine rotavirus from diarrheic bovine calves in Gujarat region. Int J Curr Microbiol Appl Sci. 2019;8(9):1282-1293. https://doi.org/10.20546/ijcmas.2019.809.147
  20. Makwana PM, Kalyani I, Desai D, Patel J, Solanki J, Vihol P, et al. Detection of bovine rotavirus (BRV) infection in neonatal calves of in and around Navsari district of South Gujarat, India. J Entomol Zool Stud. 2020;8(2):1092-1097.
  21. Majeed QA, Al-Batel MK, Abdou NE, El-Azazy OM, Sami AM, El-Said H. Infectious causes of neonatal diarrhea in cattle in Kuwait with special reference to cryptosporidiosis. J Anim Vet Adv. 2011;10(17):2282-2286.  https://doi.org/10.3923/javaa.2011.2282.2286
  22. Beksisa U, Melese E, Helen A, Tamirat SI, Markos T, Temesgen K, Neima T. Antigen detection of bovine rotavirus infection in diarrheic crossbred dairy calves reared by Holeta Research Center, Oromiya Region Ethiopia. Biomed J Sci Tech Res. 2020;30(2):23242-23246.
  23. Abdulazeez AA, Abed MN. Genotyping of rotavirus in neonatal calves with acute gastroenteritis in Iraq. Adv Microbiol. 2017;7(12):863-870. https://doi.org/10.4236/aim.2017.712066
  24. Al-Yousif Y, Anderson J, Chard-Bergstrom C, Bustamante A, Muenzenberger M, Austin K, et al. Evaluation of a latex agglutination kit (Virogen Rotatest) for detection of bovine rotavirus in fecal samples. Clin Diagn Lab Immunol. 2001;8(3):496-498. https://doi.org/10.1128/CDLI.8.3.496-498.2001
  25. Hassan HA, Kshash QH, Mansour KA. Detection of bovine rotavirus in diarrheic calves by using rapid test in some Mid-Euphrates provinces. Al-Qadisiyah J Vet Med Sci. 2014;13(2):20-26. https://doi.org/10.29079/vol13iss2art297
  26. Singh T, Jhala M. Comparing relative sensitivity and specificity of LA and RNA-PAGE in detecting bovine rotaviruses. Buffalo Bull. 2011;30(1):36-44.
  27. Reidy N, Lennon G, Fanning S, Power E, O'Shea H. Molecular characterisation and analysis of bovine rotavirus strains circulating in Ireland 2002-2004. Vet Microbiol. 2006;117(2-4):242-247. https://doi.org/10.1016/j.vetmic.2006.05.004
  28. Minakshi P, Ranjan K, Pandey N, Dahiya S, Khurana S, Bhardwaj N, et al. Predominance of G10 genotype of rotavirus in diarrheic buffalo calves: a potential threat for animal to human zoonotic transmission. Adv Anim Vet Sci. 2015;3(1s):16-21. https://doi.org/10.14737/journal.aavs/2015/3.1s.16.21
  29. Sravani G, Kaur G, Chandra M, Dwivedi P. Prevalence of group A bovine rotavirus in neonatal calves in Punjab, India. J Microbiol Immun Biotechnol. 2015;2(1):9-14.
  30. Beg SA, Wani SA, Hussain I, Bhat MA. Determination of G and P type diversity of group A rotaviruses in faecal samples of diarrhoeic calves in Kashmir, India. Lett Appl Microbiol. 2010;51(5):595-599. https://doi.org/10.1111/j.1472-765X.2010.02944.x
  31. Manuja BK, Prasad M, Gulati BR, Manuja A, Prasad G. Comparative efficacy of immunological, molecular and culture assays for detection of group A rotavirus from faecal samples of buffalo (Bubalus bubalis) calves. Trop Anim Health Prod. 2010;42(8):1817-1820. https://doi.org/10.1007/s11250-010-9642-y
  32. Arguelles MH, Villegas GA, Castello A, Abrami A, Ghiringhelli PD, Semorile L, et al. VP7 and VP4 genotyping of human group A rotavirus in Buenos Aires, Argentina. J Clin Microbiol. 2000;38(1):252-259.  https://doi.org/10.1128/JCM.38.1.252-259.2000
  33. Silva FD, Gregori F, Goncalves A, Samara SI, Buzinaro MG. Molecular characterization of group A bovine rotavirus in southeastern and central-western Brazil, 2009-2010. Pesqui Vet Bras. 2012;32(3):237-242. https://doi.org/10.1590/S0100-736X2012000300010
  34. Suresh T, Rai RB, Dhama K, Sawant PM, Kumar D, Bhatt P. Determination of G and P type diversity of group A rotaviruses and detection of a new genotype from diarrhoeic calves in northern and southern states of India. J Vet Pract. 2012;13(1):1-8.
  35. Otto PH, Rosenhain S, Elschner MC, Hotzel H, Machnowska P, Trojnar E, et al. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Vet Microbiol. 2015;179(3-4):168-176. https://doi.org/10.1016/j.vetmic.2015.07.021
  36. Monini M, Cappuccini F, Battista P, Falcone E, Lavazza A, Ruggeri FM. Molecular characterization of bovine rotavirus strains circulating in northern Italy, 2003-2005. Vet Microbiol. 2008;129(3-4):384-389.  https://doi.org/10.1016/j.vetmic.2007.11.036
  37. da Silva Medeiros TN, Lorenzetti E, Alfieri AF, Alfieri AA. G and P genotype profiles of rotavirus A field strains circulating in beef and dairy cattle herds in Brazil, 2006-2015. Comp Immunol Microbiol Infect Dis. 2019;64(1):90-98. https://doi.org/10.1016/j.cimid.2019.03.002
  38. Ahmed S, Hazarika R, Bora D, Tamuly S. Detection and genotypic characterization of Rotavirus from bovine calves of assam, a North Eastern State of India. J Anim Plant Sci. 2017;27(2):439-445.
  39. Iturriza Gomara M, Kang G, Mammen A, Jana AK, Abraham M, Desselberger U, et al. Characterization of G10P[11] rotaviruses causing acute gastroenteritis in neonates and infants in Vellore, India. J Clin Microbiol. 2004;42(6):2541-2547. https://doi.org/10.1128/JCM.42.6.2541-2547.2004