DOI QR코드

DOI QR Code

Genomic insights of S. aureus associated with bovine mastitis in a high livestock activity region of Mexico

  • Jose Roberto Aguirre-Sanchez (Laboratorio Nacional para la Investigacion en Inocuidad Alimentaria (LANIIA), Centro de Investigacion en Alimentacion y Desarrollo (CIAD)) ;
  • Nohemi Castro-del Campo (Departamento de Parasitologia Animal. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autonoma de Sinaloa (UAS)) ;
  • José Andres Medrano-Felix (Laboratorio Nacional para la Investigacion en Inocuidad Alimentaria (LANIIA), Centro de Investigacion en Alimentacion y Desarrollo (CIAD)) ;
  • Alex Omar Martínez-Torres (Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panama) ;
  • Cristobal Chaidez (Laboratorio Nacional para la Investigacion en Inocuidad Alimentaria (LANIIA), Centro de Investigacion en Alimentacion y Desarrollo (CIAD)) ;
  • Jordi Querol-Audi (Experimental and Applied Microbiology Laboratory, Vice Rectory of Research and Postgraduate Affairs, Universidad de Panama) ;
  • Nohelia Castro-del Campo (Laboratorio Nacional para la Investigacion en Inocuidad Alimentaria (LANIIA), Centro de Investigacion en Alimentacion y Desarrollo (CIAD))
  • Received : 2023.11.29
  • Accepted : 2024.02.14
  • Published : 2024.07.31

Abstract

Importance: Bovine mastitis, predominantly associated with gram-positive Staphylococcus aureus, poses a significant threat to dairy cows, leading to a decline in milk quality and volume with substantial economic implications. Objective: This study investigated the incidence, virulence, and antibiotic resistance of S. aureus associated with mastitis in dairy cows. Methods: Fifty milk-productive cows underwent a subclinical mastitis diagnosis, and the S. aureus strains were isolated. Genomic DNA extraction, sequencing, and bioinformatic analysis were performed, supplemented by including 124 S. aureus genomes from cows with subclinical mastitis to enhance the overall analysis. Results: The results revealed a 42% prevalence of subclinical mastitis among the cows tested. Genomic analysis identified 26 sequence types (STs) for all isolates, with Mexican STs belonging primarily to CC1 and CC97. The analyzed genomes exhibited multidrug resistance to phenicol, fluoroquinolone, tetracycline, and cephalosporine, which are commonly used as the first line of treatment. Furthermore, a similar genomic virulence repertoire was observed across the genomes, encompassing the genes related to invasion, survival, pathogenesis, and iron uptake. In particular, the toxic shock syndrome toxin (tss-1) was found predominantly in the genomes isolated in this study, posing potential health risks, particularly in children. Conclusion and Relevance: These findings underscore the broad capacity for antibiotic resistance and pathogenicity by S. aureus, compromising the integrity of milk and dairy products. The study emphasizes the need to evaluate the effectiveness of antibiotics in combating S. aureus infections.

Keywords

Acknowledgement

The authors thank MC Arlet Guadalupe Cruz Calderon and MVZ Jesus Joel Freer Uriarte for their technical support.

References

  1. FAO. Portal lacteo [Internet]. Rome: FAO; 2023. https://www.fao.org/dairy-production-products/socio-economics/dairy-development/es/. Updated 2024. Accessed 2023 Nov 14. 
  2. INEGI. Cuentame de Mexico [Internet]. Aguascalientes: INEGI; 2019. https://cuentame.inegi.org.mx/economia/primarias/gana/default.aspx?tema=e/. Updated 2020. Accessed 2023 Nov 14. 
  3. Gallegos-Daniel C, Taddei-Bringas C, Gonzalez-Cordova AF. Panorama de la industria lactea en Mexico. Estud Soc Rev Aliment Contemp y Desarro Reg. 2023;33(61).
  4. Tarazona-Manrique LE, Villate-Hernandez JR, Andrade-Becerra RJ. Bacterial and fungal infectious etiology causing mastitis in dairy cows in the highlands of Boyaca (Colombia). Rev Fac Med Vet Zootec. 2019;66(3):208-218.
  5. Goulart DB, Mellata M. Escherichia coli mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Front Microbiol. 2022;13:928346.
  6. Khan MZ, Khan A. Basic facts of mastitis in dairy animals: a review. Pak Vet J. 2006;26(4):204. 
  7. Krebs I, Zhang Y, Wente N, Leimbach S, Kromker V. Bacteremia in severe mastitis of dairy cows. Microorganisms. 2023;11(7):1639.
  8. Cobirka M, Tancin V, Slama P. Epidemiology and classification of mastitis. Animals (Basel). 2020;10(12):2212.
  9. Pedersen RR, Kromker V, Bjarnsholt T, Dahl-Pedersen K, Buhl R, Jorgensen E. Biofilm research in bovine mastitis. Front Vet Sci. 2021;8:656810.
  10. Freitas CH, Mendes JF, Villarreal PV, Santos PR, Goncalves CL, Gonzales HL, et al. Identification and antimicrobial suceptibility profile of bacteria causing bovine mastitis from dairy farms in Pelotas, Rio Grande do Sul. Braz J Biol. 2018;78(4):661-666.
  11. Manjarrez Lopez AM, Diaz Zarco S, Salazar Garcia F, Valladares Carranza B, Gutierrez Castillo A del C, Barbabosa Plliego A, et al. Staphylococcus aureus biotypes in cows presenting subclinical mastitis from family dairy herds in the Central-Eastern State of Mexico. Rev Mex De Cienc Pecu. 2012;3(2). 
  12. Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P. Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect. 2010;138(5):606-625.
  13. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. CLSI Doc M100-S20. Wayne: Clin Lab Stand Institute; 2010, p 30. 
  14. Andrews S. FastQC: a quality control tool for high throughput sequence data [Internet]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Updated 2010. Accessed 2023 Dec 8. 
  15. Krueger F. Trim Galore. A Wrapper Tool Around Cutadapt FastQC to Consistently Apply Qual Adapt Trimming to FastQ Files. San Francisco: Altos Labs; 2015, p 517. 
  16. Cheng WN, Han SG. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments: a review. Asian-Australas J Anim Sci. 2020;33(11):1699-1713.
  17. De Oliveira AP, Watts JL, Salmon SA, Aarestrup FM. Antimicrobial susceptibility of Staphylococcus aureus isolated from bovine mastitis in Europe and the United States. J Dairy Sci. 2000;83(4):855-862.
  18. Kumar R, Yadav BR, Singh RS. Antibiotic resistance and pathogenicity factors in Staphylococcus aureus isolated from mastitic Sahiwal cattle. J Biosci. 2011;36(1):175-188.
  19. Salgado-Ruiz TB, Rodriguez A, Gutierrez D, Martinez B, Garcia P, Espinoza-Ortega A, et al. Molecular characterization and antimicrobial susceptibility of Staphylococcus aureus from small-scale dairy systems in the highlands of Central Mexico. Dairy Sci Technol. 2015;95(2):181-196. 
  20. Varela-Ortiz DF, Barboza-Corona JE, Gonzalez-Marrero J, Leon-Galvan MF, Valencia-Posadas M, Lechuga-Arana AA, et al. Antibiotic susceptibility of Staphylococcus aureus isolated from subclinical bovine mastitis cases and in vitro efficacy of bacteriophage. Vet Res Commun. 2018;42(3):243-250.
  21. Castellano Gonzalez MJ, Perozo-Mena AJ. Mecanismos de resistencia a antibioticos β-lactamicos en Staphylococcus aureus. Kasmera. 2010;38(1):18-35. 
  22. Dan M, Yehui W, Qingling M, Jun Q, Xingxing Z, Shuai M, et al. Antimicrobial resistance, virulence gene profile and molecular typing of Staphylococcus aureus isolates from dairy cows in Xinjiang Province, northwest China. J Glob Antimicrob Resist. 2019;16:98-104.
  23. Dabul AN, Camargo IL. Clonal complexes of Staphylococcus aureus: all mixed and together. FEMS Microbiol Lett. 2014;351(1):7-8.
  24. Smith EM, Green LE, Medley GF, Bird HE, Fox LK, Schukken YH, et al. Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J Clin Microbiol. 2005;43(9):4737-4743.
  25. Aires-de-Sousa M, Parente CE, Vieira-da-Motta O, Bonna IC, Silva DA, de Lencastre H. Characterization of Staphylococcus aureus isolates from buffalo, bovine, ovine, and caprine milk samples collected in Rio de Janeiro State, Brazil. Appl Environ Microbiol. 2007;73(12):3845-3849.
  26. Guinane CM, Sturdevant DE, Herron-Olson L, Otto M, Smyth DS, Villaruz AE, et al. Pathogenomic analysis of the common bovine Staphylococcus aureus clone (ET3): emergence of a virulent subtype with potential risk to public health. J Infect Dis. 2008;197(2):205-213.
  27. Hoekstra J, Zomer AL, Rutten VP, Benedictus L, Stegeman A, Spaninks MP, et al. Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis. Sci Rep. 2020;10(1):18172.
  28. Hosain MZ, Kabir SM, Kamal MM. Antimicrobial uses for livestock production in developing countries. Vet World. 2021;14(1):210-221.
  29. Maradiaga M, Echeverry A, Miller MF, den Bakker HC, Nightingale K, Cook PW, et al. Characterization of antimicrobial resistant (AMR) Salmonella enterica isolates associated with cattle at harvest in Mexico. Meat Muscle Biol. 2019;3(1):63-69. 
  30. Molineri AI, Camussone C, Zbrun MV, Suarez Archilla G, Cristiani M, Neder V, et al. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: systematic review and meta-analysis. Prev Vet Med. 2021;188:105261.
  31. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):18033.
  32. Mohamed N, Timofeyeva Y, Jamrozy D, Rojas E, Hao L, Silmon de Monerri NC, et al. Molecular epidemiology and expression of capsular polysaccharides in Staphylococcus aureus clinical isolates in the United States. PLoS One. 2019;14(1):e0208356.
  33. Luong TT, Lee CY. Overproduction of type 8 capsular polysaccharide augments Staphylococcus aureus virulence. Infect Immun. 2002;70(7):3389-3395.
  34. Fang R, Cui J, Cui T, Guo H, Ono HK, Park CH, et al. Staphylococcal enterotoxin C is an important virulence factor for mastitis. Toxins (Basel). 2019;11(3):141.
  35. G Abril A, G Villa T, Barros-Velazquez J, Canas B, Sanchez-Perez A, Calo-Mata P, et al. Staphylococcus aureus exotoxins and their detection in the dairy industry and mastitis. Toxins (Basel). 2020;12(9):537.
  36. Ginestre M, Avila Y, Valero K, Rivera J, Brinez W, Valeris R. Produccion de biofilm y presencia de genes icaABCD en cepas de Staphylococcus aureus aisladas de leche cruda. Kasmera. 2017;45(2):79-87. 
  37. Hurd AF, Garcia-Lara J, Rauter Y, Cartron M, Mohamed R, Foster SJ. The iron-regulated surface proteins IsdA, IsdB, and IsdH are not required for heme iron utilization in Staphylococcus aureus. FEMS Microbiol Lett. 2012;329(1):93-100.
  38. Hammer ND, Skaar EP. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol. 2011;65(1):129-147.
  39. Gustafsson E, Oscarsson J. Maximal transcription of aur (aureolysin) and sspA (serine protease) in Staphylococcus aureus requires staphylococcal accessory regulator R (sarR) activity. FEMS Microbiol Lett. 2008;284(2):158-164.
  40. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol. 2016;2(1):16183.