DOI QR코드

DOI QR Code

Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria

  • Young Hee Lee (Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University) ;
  • Yun-Hee Kim (Laboratory of Plant Molecular Physiology, Department of Biology Education, Gyeongsang National University) ;
  • Jeum Kyu Hong (Laboratory of Horticultural Crop Protection, Division of Horticultural Science, Gyeongsang National University)
  • 투고 : 2024.03.26
  • 심사 : 2024.07.08
  • 발행 : 2024.08.01

초록

Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.

키워드

과제정보

This work was financially supported by National Research Foundation (NRF) of Korea, Ministry of Education, Science and Technology (MEST) of Korea government (grant no. NRF-2020R1A2C1101613), Republic of Korea.

참고문헌

  1. Abe, H., Ohnishi, J., Narusaka, M., Seo, S., Narusaka, Y., Tsuda, S. and Kobayashi, M. 2008. Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. Plant Cell Physiol. 49:68-80. https://doi.org/10.1093/pcp/pcm168
  2. Abe, H., Shimoda, T., Ohnishi, J., Kugimiya, S., Narusaka, M., Seo, S., Narusaka, Y., Tsuda, S. and Kobayashi, M. 2009. Jasmonate-dependent plant defense restricts thrips performance and preference. BMC Plant Biol. 9:97.
  3. Adlung, N., Prochaska, H., Thieme, S., Banik, A., Bluher, D., John, P., Nagel, O., Schulze, S., Gantner, J., Delker, C., Stuttmann, J. and Bonas, U. 2016. Non-host resistance induced by the Xanthomonas effector XopQ is widespread within the genus Nicotiana and functionally depends on EDS1. Front. Plant Sci. 7:1796.
  4. Ahammed, G. J., Li, X., Zhang, G., Zhang, H., Shi, J., Pan, C., Yu, J. and Shi, K. 2018. Tomato photorespiratory glycolateoxidase-derived H2O2 production contributes to basal defence against Pseudomonas syringae. Plant Cell Environ. 41:1126-1138. https://doi.org/10.1111/pce.12932
  5. Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., Tyagi, A., Islam, S. T., Mushtaq, M., Yadav, P., Rawat, S. and Grover, A. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol. Res. 212-213:29-37. https://doi.org/10.1016/j.micres.2018.04.008
  6. Arve, L. E., Kruse, O. M. O., Tanino, K. K., Olsen, J. E., Futsaether, C. and Torre, S. 2015. Growth in continuous high air humidity increases the expression of CYP707A-genes and inhibits stomatal closure. Environ. Exp. Bot. 115:11-19. https://doi.org/10.1016/j.envexpbot.2015.02.004
  7. Ayliffe, M. and Sorensen, C. K. 2019. Plant nonhost resistance: paradigms and new environments. Curr. Opin. Plant Biol. 50:104-113. https://doi.org/10.1016/j.pbi.2019.03.011
  8. Cao, F. Y., Yoshioka, K. and Desveaux, D. 2011. The roles of ABA in plant-pathogen interactions. J. Plant Res. 124:489-499. https://doi.org/10.1007/s10265-011-0409-y
  9. Cao, H.-H., Liu, H.-R., Zhang, Z.-F. and Liu, T.-X. 2016. The green peach aphid Myzus persicae perform better on preinfested Chinese cabbage Brassica pekinensis by enhancing host plant nutritional quality. Sci. Rep. 6:21954.
  10. Chiesa, M. A., Roeschlin, R. A., Favaro, M. A., Uviedo, F., Campos-Beneyto, L., D'Andrea, R., Gadea, J. and Marano, M. R. 2019. Plant responses underlying nonhost resistance of Citrus limon against Xanthomonas campestris pv. campestris. Mol. Plant Pathol. 20:254-269. https://doi.org/10.1111/mpp.12752
  11. Choudhary, A., Gupta, A., Ramegowda, V. and Senthil-Kumar, M. 2017. Transcriptomic changes under combined and nonhost bacteria reveal novel and robust defenses in Arabidopsis thaliana. Environ. Exp. Bot. 139:152-164. https://doi.org/10.1016/j.envexpbot.2017.05.005
  12. Dalla Pria, M., Christiano, R. C. S., Furtado, E. L., Amorim, L. and Bergamin Filho, A. 2006. Effect of temperature and leaf wetness duration on infection of sweet oranges by Asiatic citrus canker. Plant Pathol. 55:657-663. https://doi.org/10.1111/j.1365-3059.2006.01393.x
  13. Daurelio, L. D., Petrocelli, S., Blanco, F., Holuigue, L., Ottado, J. and Orellano, E. G. 2011. Transcriptome analysis reveals novel genes involved in nonhost response to bacterial infection in tobacco. J. Plant Physiol. 168:382-391. https://doi.org/10.1016/j.jplph.2010.07.014
  14. Daurelio, L. D., Romero, M. S., Petrocelli, S., Merelo, P., Cortadi, A. A., Talon, M., Tadeo, F. R. and Orellano, E. G. 2013. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria. J. Plant Physiol. 170:934-942. https://doi.org/10.1016/j.jplph.2013.01.011
  15. de Souza Yop, G., Gair, L. H. V., da Silva, V. S., Machado, A. C. Z., Santiago, D. C. and Tomaz, J. P. 2023. Abscisic acid is involved in the resistance response of Arabidopsis thaliana against Meloidogyne paranaensis. Plant Dis. 107:2778-2783. https://doi.org/10.1094/PDIS-07-22-1726-RE
  16. de Vleesschauwer, D., Yang, Y., Cruz, C. V. and Hofte, M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 152:2036-2052. https://doi.org/10.1104/pp.109.152702
  17. Delventhal, R., Rajaraman, J., Stefanato, F. L., Rehman, S., Aghnoum, R., McGrann, G. R. D., Bolger, M., Usadel, B., Hedley, P. E., Boyd, L., Niks, R. E., Schweizer, P. and Schffrath, U. 2017. A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. BMC Plant Biol. 17:232.
  18. Desurmont, G. A., Xu, H. and Turlings, T. C. J. 2016. Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa. Plant Cell Environ. 39:1920-1927. https://doi.org/10.1111/pce.12752
  19. Dong, X., Yi, H., Lee, J., Nou, I.-S., Han, C.-T. and Hur, Y. 2015. Global gene-expression analysis to identify differentially expressed genes critical for the heat stress response in Brassica rapa. PLoS ONE 10:e0130451.
  20. Farahani, A. S. and Taghavi, M. 2016. Changes of antioxidant enzymes of mung bean [Vigna radiata (L.) R. Wilczek] in response to host and non-host bacterial pathogens. J. Plant Prot. Res. 56:95-99.
  21. Fonseca, J. P. and Mysore, K. S. 2019. Genes involved in nonhost disease resistance as a key to engineer durable resistance in crops. Plant Sci. 279:108-116. https://doi.org/10.1016/j.plantsci.2018.07.002
  22. Franco, F. P., Moura, D. S., Vivanco, J. M. and Silva-Filho, M. C. 2017. Plant-insect-pathogen interactions: a naturally complex menage a trois. Curr. Opin. Microbiol. 37:54-60. https://doi.org/10.1016/j.mib.2017.04.007
  23. Gao, C., Xu, H., Huang, J., Sun, B., Zhang, F., Savage, Z., Duggan, C., Yan, T., Wu, C.-h, Wang, Y., Vleeshouwers, V. G. A. A., Kamoun, S., Bozkurt, T. O. and Dong, S. 2020. Pathogen manipulation of chloroplast function triggers a lightdependent immune recognition. Proc. Natl. Acad. Sci. U. S. A. 117:9613-9620. https://doi.org/10.1073/pnas.2002759117
  24. Griebel, T. and Zeier, J. 2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signalling controls systemic acquired resistance rather than local defense. Plant Physiol. 147:790-801. https://doi.org/10.1104/pp.108.119503
  25. Gupta, K. J., Brotman, Y., Segu, S., Zeier, T., Zeier, J., Persijn, S. T., Cristescu, S. M., Harren, F. J. M., Bauwe, H., Fernie, A. R., Kaiser, W. M. and Mur, L. A. J. 2013. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J. Exp. Bot. 64:553-568. https://doi.org/10.1093/jxb/ers348
  26. Hammond-Kosack, K. E., Silverman, P., Raskin, I. and Jones, J. D. G. 1996. Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance gene. Plant Physiol. 110:1381-1394. https://doi.org/10.1104/pp.110.4.1381
  27. Han, Z., Xiong, D., Schneiter, R. and Tian, C. 2023. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. Mol. Plant Pathol. 24:651-668. https://doi.org/10.1111/mpp.13320
  28. He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B. N., Alfano, J. R., Tang, X. and Zhou, J.-M. 2004. Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J. 37:589-602. https://doi.org/10.1111/j.1365-313X.2003.01986.x
  29. Hwang, I. S., Choi, D. S., Kim, N. H., Kim, D. S. and Hwang, B. K. 2014. Pathogenesis-related protein 4b interacts with leucine-rich repeat protein 1 to suppress PR4b-triggered cell death and defense response in pepper. Plant J. 77:521-533. https://doi.org/10.1111/tpj.12400
  30. Iqbal, Z., Iqbal, M. S., Hashem, A., Abd_Allah, E. F. and Ansari, M. I. 2021. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front. Plant Sci. 12:631810.
  31. Ishibashi, K., Naito, S., Meshi, T. and Ishikawa, M. 2009. An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses. Proc. Natl. Acad. Sci. U. S. A. 106:8778-8783. https://doi.org/10.1073/pnas.0809105106
  32. Ishiga, Y., Ishiga, T., Ikeda, Y., Matsuura, T. and Mysore, K. S. 2016. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ 4:e1938.
  33. Jambunathan, N., Siani, J. M. and McNellis, T. W. 2001. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225-2240. https://doi.org/10.1105/tpc.010226
  34. Kang, L., Li, J., Zhao, T., Xiao, F., Tang, X., Thilmony, R., He, S. and Zhou, J.-M. 2003. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc. Natl. Acad. Sci. U. S. A. 100:3519-3524. https://doi.org/10.1073/pnas.0637377100
  35. Kay, S. and Bonas, U. 2009. How Xanthomonas type III effectors manipulate the host plant. Curr. Opin. Microbiol. 12:37-43. https://doi.org/10.1016/j.mib.2008.12.006
  36. Keppler, L. D. and Novacky, A. 1986. Involvement of membrane lipid peroxidation in the development of a bacterially induced hypersensitive reaction. Phytopathology 76:104-108. https://doi.org/10.1094/Phyto-76-104
  37. Kettles, G. J., Bayon, C., Canning, G., Rudd, J. J. and Kanyuka, K. 2017. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. New Phytol. 213:338-350. https://doi.org/10.1111/nph.14215
  38. Kim, N. H. and Hwang, B. K. 2015. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signalling. Plant J. 81:81-94. https://doi.org/10.1111/tpj.12709
  39. Kim, W., Prokchorchik, M., Tian, Y., Kim, S., Jeon, H. and Segonzac, C. 2020. Perception of unrelated microbe-associated molecular patterns triggers conserved yet variable physiological and transcriptional changes in Brassica rapa ssp. pekinensis. Hortic. Res. 7:186.
  40. Kim, Y. J., Lee, Y. H., Lee, H. -J., Jung, H. and Hong, J. K. 2015. H2O2 production and gene expression of antioxidant enzymes in Chinese cabbage (Brassica rapa var. glabra Regel) seedlings regulated by plant development and nitrosative stresstriggered cell death. Plant Biotechnol. Rep. 9:67-78. https://doi.org/10.1007/s11816-015-0343-x
  41. Klement, Z., Bozso, Z., Ott, P. G., Kecskes, M. L. and Rudolph, K. 1999. Symptomless resistant response instead of the hypersensitive reaction in tobacco leaves after infiltration of heterologous pathovars of Pseudomonas syringae. J. Phytopathol. 147:467-475. https://doi.org/10.1111/j.1439-0434.1999.tb03852.x
  42. Krzymowska, M., Konopka-Postupolska, D., Sobczak, M., Macioszek, V., Ellis, B. E. and Henning, J. 2007. Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. Plant J. 50:253-264. https://doi.org/10.1111/j.1365-313X.2007.03046.x
  43. Lajeunesse, G., Roussin-Leveillee, C., Boutin, S., Fortin, E., Laforest-Lapointe, I. and Moffett, P. 2023. Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signalling. Nat. Commun. 14:713.
  44. Lee, H.-A., Kim, S.-Y., Oh, S.-K., Yeom, S.-I., Kim, S.-B., Kim, M.-S., Kamoun, S. and Choi, D. 2014. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans. New Phytol. 203:926-938. https://doi.org/10.1111/nph.12861
  45. Lee, S., Ishiga, Y., Clermont, K. and Mysore, K. S. 2013. Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PeerJ 1:e34.
  46. Lee, S., Vemanna, R. S., Oh, S., Rojas, C. M., Oh, Y., Kaundal, A., Kwon, T., Lee, H.-K., Senthil-Kumar, M. and Mysore, K. S. 2022a. Functional role of formate dehydrogenase 1 (FDH1) for host and nonhost disease resistance against bacterial pathogens. PLoS ONE 17:e0264917.
  47. Lee, S., Whitaker, V. M. and Hutton, S. F. 2016. Mini review: potential applications of non-host resistance for crop improvement. Front. Plant Sci. 7:997.
  48. Lee, Y. H. and Hong, J. K. 2012. Host and non-host disease resistances of kimchi cabbage against different Xanthomonas campestris pathovars. Plant Pathol. J. 28:322-329. https://doi.org/10.5423/PPJ.NT.04.2012.0041
  49. Lee, Y. H. and Hong, J. K. 2015. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathol. 64:406-415. https://doi.org/10.1111/ppa.12262
  50. Lee, Y. H., Kim, Y. J., Choi, H. W., Kim., Y.-H. and Hong, J. K. 2022b. Sodium nitroprusside pretreatment alters responses of Chinese cabbage seedlings to subsequent challenging stresses. J. Plant Interact. 17:206-219. https://doi.org/10.1080/17429145.2021.2024286
  51. Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Korbes, A. P., Memelink, J., Pieterse, C. M. J. and Ritsema, T. 2010. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol. PlantMicrobe Interact. 23:187-197. https://doi.org/10.1094/MPMI-23-2-0187
  52. Li, H., Mahmood, T., Antony, G., Lu, N., Pumphreys, M., Gill, B., Kang, Z., White, F. F. and Bai, J. 2017a. The non-host pathogen Puccinia triticina elicits an active transcriptional response in rice. Eur. J. Plant Pathol. 147:553-569. https://doi.org/10.1007/s10658-016-1025-4
  53. Li, L., Li, R.-F., Ming, Z.-H., Lu, G.-T. and Tang, J.-L. 2017b. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris. Sci. Rep. 7:42724.
  54. Li, T., Zhou, J. and Li, J. 2023. Combined effects of temperature and humidity on the interaction between tomato and Botrytis cinerea revealed by integration of histological characteristics and transcriptome sequencing. Hortic. Res. 10:uhac257.
  55. Liu, Y., Mahmud, M. R., Xu, N. and Liu, J. 2022. The Pseudomonas syringae effector AvrPtoB targets abscisic acid signaling pathway to promote its virulence in Arabidopsis. Phytopathol. Res. 4:5.
  56. Long, Q., Xie, Y., He, Y., Li, Q., Zou, X. and Chen, S. 2019. Abscisic acid promotes jasmonic acid accumulation and plays a key role in citrus canker development. Front. Plant Sci. 10:1634.
  57. Lu, M., Tang, X. and Zhou, J.-M. 2001. Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13:437-447. https://doi.org/10.1105/tpc.13.2.437
  58. Lummerzheim, M., de Oliveira, D., Castresana, C., Miguens, F. C., Louzada, E., Roby, D., Van Montagu, M. and Timmerman, B. 1993. Identification of compatible and incompatible interactions between Arabidopsis thaliana and Xanthomonas campestris pv. campestris and characterization of the hypersensitive response. Mol. Plant-Microbe Interact. 6:532-544. https://doi.org/10.1094/MPMI-6-532
  59. Luo, Q., Wang, J., Wang, P., Liang, X., Li, J., Wu, C., Fang, H., Ding, S., Shao, S. and Shi, K. 2023. Transcriptomic and genetic approaches reveal that low-light-induced disease susceptibility is related to cellular oxidative stress in tomato. Hortic. Res. 10:uhad173.
  60. Ma, H., Xiang, G., Li, Z., Wang, Y., Dou, M., Su, L., Yin, X., Liu, R., Wang, Y. and Xu, Y. 2018. Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. Plant Biotechnol. J. 16:1488-1501. https://doi.org/10.1111/pbi.12891
  61. Mackey, D., Holt, B. F., Wiig, A. and Dangl, J. L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743-754. https://doi.org/10.1016/S0092-8674(02)00661-X
  62. Metz, M., Dahlbeck, D., Morales, C. Q., Al Sady, B., Clark, E. T. and Staskawicz, B. J. 2005. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant J. 41:801-814. https://doi.org/10.1111/j.1365-313X.2005.02338.x
  63. Morales, G., Moragrega, C., Montesinos, E. and Llorente, I. 2018. Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni. PLoS ONE 13:e0193813.
  64. Morgham, A. T., Richardson, P. E., Essenberg, M. and Covers, E. C. 1988. Effects of continuous dark upon ultrastructure, bacterial populations and accumulation of phytoalexins during interactions between Xanthomonas campestris pv. malvacearum and bacterial blight susceptible and resistant cotton. Physiol. Mol. Plant Pathol. 32:141-162. https://doi.org/10.1016/S0885-5765(88)80012-2
  65. Mysore, K. S. and Ryu, C.-M. 2004. Non-host resistance: how much do we know? Trends Plant Sci. 9:97-104. https://doi.org/10.1016/j.tplants.2003.12.005
  66. Narusaka, Y., Narusaka, M., Seki, M., Ishida, J., Shinozaki, K., Nan, Y., Park, P., Shiraishi, T. and Kobayashi, M. 2005. Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata. Mol. Plant Pathol. 6:615-627. https://doi.org/10.1111/j.1364-3703.2005.00310.x
  67. Oh, C., Heu, S., Yoo, J.-Y. and Cho, Y. 1999. An hrcU-homologous gene mutant of Xanthomonas campestris pv. glycines 8ra that lost pathogenicity on the host plant but was able to elicit the hypersensitive response on nonhosts. Mol. PlantMicrobe Interact. 12:633-639. https://doi.org/10.1094/MPMI.1999.12.7.633
  68. Oh, S.-K., Lee, S., Chung, E., Park, J. M., Yu, S. H., Ryu, C.-M. and Choi, D. 2006. Insight into types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta 223:1101-1107. https://doi.org/10.1007/s00425-006-0232-1
  69. Okamoto, M., Tanaka, Y., Abrams, S. R., Kamiya, Y., Seki, M. and Nambara, E. 2009. High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol. 149:825-834. https://doi.org/10.1104/pp.108.130823
  70. Ontiveros, I., Lopez-Moya, J. J. and Diaz-Pendon, J. A. 2022. Coinfection of tomato plants with Tomato yellow leaf curl virus and Tomato chlorosis virus affects the interaction with host and whiteflies. Phytopathology 112:944-952. https://doi.org/10.1094/PHYTO-08-21-0341-R
  71. Panchal, S., Chitrakar, R., Thompson, B. K., Obulareddy, N., Roy, D., Hambright, W. S. and Melotto, M. 2016. Regulation of stomatal defense by air relative humidity. Plant Physiol. 172:2021-2032. https://doi.org/10.1104/pp.16.00696
  72. Park, Y.-S., Jeon, M. H., Lee, S.-H., Moon, J. S., Cha, J.-S., Kim, H. Y. and Cho, T.-J. 2005. Activation of defense responses in Chinese cabbage by a nonhost pathogen, Pseudomonas syringae pv. tomato. J. Biochem. Mol. Biol. 38:748-754. https://doi.org/10.5483/BMBRep.2005.38.6.748
  73. Pecenkova, T., Pejchar, P., Moravec, T., Drs, M., Haluska, S., Santrucek, J., Potocka, A., Zarsky, V. and Potocky, M. 2022. Immunity functions of Arabidopsis pathogenesis-related 1 are coupled but not confined to its C-terminus processing and trafficking. Mol. Plant Pathol. 23:664-678. https://doi.org/10.1111/mpp.13187
  74. Priller, J. P. R., Reid, S., Konein, P., Dietrich, P. and Sonnewald, S. 2016. The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLoS ONE 11:e0159107.
  75. Qiu, J., Liu, Z., Xie, J., Lan, B., Shen, Z., Shi, H., Lin, F., Shen, X. and Kou, Y. 2022. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice. Plant Cell Environ. 45:3399-3411. https://doi.org/10.1111/pce.14452
  76. Raffeiner, M., ustun, S., Guerra, T., Spinti, D., Fitzner, M., Sonnewald, S., Baldermann, S. and Bornke, F. 2022. The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). Plant Cell 34:1684-1708. https://doi.org/10.1093/plcell/koac032
  77. Rani, T. S. and Podile, A. R. 2014. Extracellular matrix-associated proteome changes during non-host resistance in citrusXanthomonas interactions. Physiol. Plant. 150:565-579. https://doi.org/10.1111/ppl.12109
  78. Rani, T. S., Takahashi, D., Uemura, M. and Podile, A. R. 2015. Proteins associated with oxidative burst and cell wall strengthening accumulate during citrus-Xanthomonas nonhost interaction. Plant Mol. Biol. Rep. 33:1349-1360. https://doi.org/10.1007/s11105-014-0817-y
  79. Schulze, S., Kay, S., Buttner, D., Egler, M., Eschen-Lippold, L., Hause, G., Kruger, A., Lee, J., Muller, O., Scheel, D., Szczesny, R., Thieme, F. and Bonas, U. 2012. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195:894-911. https://doi.org/10.1111/j.1469-8137.2012.04210.x
  80. Senthil-Kumar, M. and Mysore, K. S. 2013. Nonhost resistance against bacterial pathogens: retrospectives and prospects. Annu. Rev. Phytopathol. 51:407-427. https://doi.org/10.1146/annurev-phyto-082712-102319
  81. Song, W., Ma, X., Tan, H. and Zhou, J. 2011. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiol. Biochem. 49:693-700. https://doi.org/10.1016/j.plaphy.2011.03.018
  82. Sun, Z., Liu, Z., Zhou, W., Jin, H., Liu, H., Zhou, A., Zhang, A. and Wang, M.-Q. 2016. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants. Sci. Rep. 6:26043.
  83. Uma, B., Rani, T. S. and Podile, A. R. 2011. Warriors at the gate that never sleep: non-host resistance in plants. J. Plant Physiol. 168:2141-2152. https://doi.org/10.1016/j.jplph.2011.09.005
  84. ustun, S., Bartetzko, V. and Bornke, F. 2013. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid dediated plant defence. PLoS ONE 9:e1003427.
  85. Verhage, A., Vlaardingerbroek, I., Raaymakers, C., Van Dam, N. M., Dicke, M., Van Wees, S. C. M. and Pieterse, C. M. J. 2011. Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front. Plant Sci. 2:47.
  86. Wang, C., Cai, X. and Zheng, Z. 2005. High humidity represses Cf-4/Avr4- and Cf-9/Avr9-dependent hypersensitive cell death and defense gene expression. Planta 222:947-956. https://doi.org/10.1007/s00425-005-0036-8
  87. Wang, F., Yuan, S., Wu, W., Yang, Y., Cui, Z., Wang, H. and Liu, D. 2020. TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus. PLoS Genet. 16:e1008713.
  88. Weatherwax, S. C., Ong, M. S., Degenhardt, J., Bray, E. A. and Tobin, E. M. 1996. The interaction of light and abscisic acid in the regulation of plant gene expression. Plant Physiol. 111:363-370. https://doi.org/10.1104/pp.111.2.363
  89. Whalen, M. C., Stall, R. E. and Staskawicz, B. J. 1988. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc. Natl. Acad. Sci. U. S. A. 85:6743-6747. https://doi.org/10.1073/pnas.85.18.6743
  90. Xu, J., Audenaert, K., Hofte, M. and De Vleesschauwer, D. 2013. Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv. oryzae by suppressing salicylic acid-mediated defences. PLoS ONE 8:e67413.
  91. Yang, C.-W., Wang, J. W. and Kao, C. H. 2000. The relation between accumulation of abscisic acid and proline in detached rice leaves. Biol. Plant. 43:301-304. https://doi.org/10.1023/A:1002781016598
  92. Yao, L., Jiang, Z., Wang, Y., Hu, Y., Hao, G., Zhong, W., Wan, S. and Xin, X.-F. 2023. High air humidity dampens salicylic acid pathway and NPR1 function to promote plant disease. EMBO J. 42:e113499.
  93. Zeier, J., Pink, B., Mueller, M. J. and Berger, S. 2004. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673-683. https://doi.org/10.1007/s00425-004-1272-z
  94. Zhou, F., Menke, F. L. H., Yoshioka, K., Moder, W., Shirano, Y. and Klessig, D. F. 2004. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. Plant J. 39:920-932. https://doi.org/10.1111/j.1365-313X.2004.02180.x
  95. Zurbriggen, M. D., Carrillo, N., Tognetti, V. B., Melzer, M., Peisker, M., Hause, B. and Hajirezaei, M.-R. 2009. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J. 60:962-973. https://doi.org/10.1111/j.1365-313X.2009.04010.x