DOI QR코드

DOI QR Code

Robotic-assisted Total Hip Arthroplasty and Spinopelvic Parameters: A Review

  • Steven J. Rice (Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago) ;
  • Anthony D'Abarno (Franciscan Health Olympia Fields) ;
  • Hue H. Luu (Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago)
  • Received : 2023.08.01
  • Accepted : 2023.09.18
  • Published : 2024.06.01

Abstract

Total hip arthroplasty (THA) is an effective treatment for osteoarthritis, and the popularity of the direct anterior approach has increased due to more rapid recovery and increased stability. Instability, commonly caused by component malposition, remains a significant concern. The dynamic relationship between the pelvis and lumbar spine, deemed spinopelvic motion, is considered an important factor in stability. Various parameters are used in evaluating spinopelvic motion. Understanding spinopelvic motion is critical, and executing a precise plan for positioning the implant can be difficult with manual instrumentation. Robotic and/or navigation systems have been developed in the effort to enhance THA outcomes and for implementing spinopelvic parameters. These systems can be classified into three categories: X-ray/fluoroscopy-based, imageless, and computed tomography (CT)-based. Each system has advantages and limitations. When using CT-based systems, preoperative CT scans are used to assist with preoperative planning and intraoperative execution, providing feedback on implant position and restoration of hip biomechanics within a functional safe zone developed according to each patient's specific spinopelvic parameters. Several studies have demonstrated the accuracy and reproducibility of robotic systems with regard to implant positioning and leg length discrepancy. Some studies have reported better radiographic and clinical outcomes with use of robotic-assisted THA. However, clinical outcomes comparable to those for manual THA have also been reported. Robotic systems offer advantages in terms of accuracy, precision, and potentially reduced rates of dislocation. Additional research, including conduct of randomized controlled trials, will be required in order to evaluate the long-term outcomes and cost-effectiveness of robotic-assisted THA.

Keywords

Acknowledgement

This work was supported by the Kovler Family Foundation.

References

  1. Nilsdotter AK, Lohmander LS, Klassbo M, Roos EM. Hip disability and osteoarthritis outcome score (HOOS)--validity and responsiveness in total hip replacement. BMC Musculoskelet Disord. 2003;4:10. https://doi.org/10.1186/1471-2474-4-10 
  2. Barrett WP, Turner SE, Leopold JP. Prospective randomized study of direct anterior vs postero-lateral approach for total hip arthroplasty. J Arthroplasty. 2013;28:1634-8. https://doi.org/10.1016/j.arth.2013.01.034 
  3. Sariali E, Leonard P, Mamoudy P. Dislocation after total hip arthroplasty using Hueter anterior approach. J Arthroplasty. 2008;23:266-72. https://doi.org/10.1016/j.arth.2007.04.003 
  4. Siguier T, Siguier M, Brumpt B. Mini-incision anterior approach does not increase dislocation rate: a study of 1037 total hip replacements. Clin Orthop Relat Res. 2004;(426):164-73. https://doi.org/10.1097/01.blo.0000136651.21191.9f 
  5. Matta JM, Shahrdar C, Ferguson T. Single-incision anterior approach for total hip arthroplasty on an orthopaedic table. Clin Orthop Relat Res. 2005;441:115-24. https://doi.org/10.1097/01.blo.0000194309.70518.cb 
  6. Maratt JD, Gagnier JJ, Butler PD, Hallstrom BR, Urquhart AG, Roberts KC. No difference in dislocation seen in anterior vs posterior approach total hip arthroplasty. J Arthroplasty. 2016;31(9 Suppl):127-30. https://doi.org/10.1016/j.arth.2016.02.071 
  7. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217-20. 
  8. Kelmer G, Stone AH, Turcotte J, King PJ. Reasons for revision: primary total hip arthroplasty mechanisms of failure. J Am Acad Orthop Surg. 2021;29:78-87. https://doi.org/10.5435/jaaos-d-19-00860 
  9. Brush PL, Santana A, Toci GR, et al. Surgeon Estimations of acetabular cup orientation using intraoperative fluoroscopic imagining are unreliable. Arthroplast Today. 2023;20:101109. https://doi.org/10.1016/j.artd.2023.101109 
  10. Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW. What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res. 2016;474:386-91. https://doi.org/10.1007/s11999-015-4432-5 
  11. McKnight BM, Trasolini NA, Dorr LD. Spinopelvic motion and impingement in total hip arthroplasty. J Arthroplasty. 2019;34(7S):S53-6. https://doi.org/10.1016/j.arth.2019.01.033 
  12. Heckmann ND, Lieberman JR. Spinopelvic biomechanics and total hip arthroplasty: a primer for clinical practice. J Am Acad Orthop Surg. 2021;29:e888-903. https://doi.org/10.5435/jaaos-d-20-00953 
  13. Esposito CI, Carroll KM, Sculco PK, Padgett DE, Jerabek SA, Mayman DJ. Total hip arthroplasty patients with fixed spinopelvic alignment are at higher risk of hip dislocation. J Arthroplasty. 2018;33:1449-54. https://doi.org/10.1016/j.arth.2017.12.005 
  14. Heckmann N, McKnight B, Stefl M, Trasolini NA, Ike H, Dorr LD. Late dislocation following total hip arthroplasty: spinopelvic imbalance as a causative factor. J Bone Joint Surg Am. 2018;100:1845-53. https://doi.org/10.2106/jbjs.18.00078 
  15. Vigdorchik J, Eftekhary N, Elbuluk A, et al. Evaluation of the spine is critical in the workup of recurrent instability after total hip arthroplasty. Bone Joint J. 2019;101-B:817-23. https://doi.org/10.1302/0301-620x.101b7.bjj-2018-1502.r1 
  16. Wan Z, Malik A, Jaramaz B, Chao L, Dorr LD. Imaging and navigation measurement of acetabular component position in THA. Clin Orthop Relat Res. 2009;467:32-42. https://doi.org/10.1007/s11999-008-0597-5 
  17. Lembeck B, Mueller O, Reize P, Wuelker N. Pelvic tilt makes acetabular cup navigation inaccurate. Acta Orthop. 2005;76:517-23. https://doi.org/10.1080/17453670510041501 
  18. Lazennec JY, Boyer P, Gorin M, Catonne Y, Rousseau MA. Acetabular anteversion with CT in supine, simulated standing, and sitting positions in a THA patient population. Clin Orthop Relat Res. 2011;469:1103-9. https://doi.org/10.1007/s11999-010-1732-7 
  19. Morton J, Eftekhary N, Schwarzkopf R, Vigdorchik JM. The spinopelvic relationship made simple: what every hip surgeon needs to know to prevent instability in high-risk patients undergoing total hip arthroplasty. Semin Arthroplasty. 2018;29:274-81. https://doi.org/10.1053/j.sart.2019.05.001 
  20. Sharma AK, Grammatopoulos G, Pierrepont JW, et al. Sacral slope change from standing to relaxed-seated grossly overpredicts the presence of a stiff spine. J Arthroplasty. 2023;38:713-8.e1. https://doi.org/10.1016/j.arth.2022.05.020 
  21. Grammatopoulos G, Gofton W, Jibri Z, et al. 2018 Frank Stinchfield Award: spinopelvic hypermobility is associated with an inferior outcome after THA: examining the effect of spinal arthrodesis. Clin Orthop Relat Res. 2019;477:310-21. https://doi.org/10.1097/corr.0000000000000367 
  22. Innmann MM, Reichel F, Schaper B, Merle C, Beaule PE, Grammatopoulos G. How does spinopelvic mobility and sagittal functional cup orientation affect patient-reported outcome 1 year after THA?-a prospective diagnostic cohort study. J Arthroplasty. 2021;36:2335-42. https://doi.org/10.1016/j.arth.2021.02.014 
  23. Sculco PK, Windsor EN, Jerabek SA, et al. Preoperative spinopelvic hypermobility resolves following total hip arthroplasty. Bone Joint J. 2021;103-B:1766-73. https://doi.org/10.1302/0301-620x.103b12.bjj-2020-2451.r2 
  24. Vigdorchik JM, Sharma AK, Buckland AJ, et al. 2021 Otto Aufranc Award: a simple Hip-Spine Classification for total hip arthroplasty: validation and a large multicentre series. Bone Joint J. 2021;103-B(7 Supple B):17-24. https://doi.org/10.1302/0301-620x.103b7.bjj-2020-2448.r2 
  25. Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res. 2014;472:329-36. https://doi.org/10.1007/s11999-013-3253-7 
  26. Park YS, Shin WC, Lee SM, Kwak SH, Bae JY, Suh KT. The best method for evaluating anteversion of the acetabular component after total hip arthroplasty on plain radiographs. J Orthop Surg Res. 2018;13:66. https://doi.org/10.1186/s13018-018-0767-4 
  27. MAKO THA surgical guide [Internet]. Kalamazoo (MI): Stryker; 2015 Sep 15 [cited 2023 May 3]. Available from: https://www.strykermeded.com/media/2042/mako-tha-surgical-technique.pdf 
  28. Paul HA, Bargar WL, Mittlestadt B, et al. Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res. 1992;(285):57-66. https://doi.org/10.1097/00003086-199212000-00010 
  29. Mazoochian F, Pellengahr C, Huber A, Kircher J, Refior HJ, Jansson V. Low accuracy of stem implantation in THR using the CASPAR-system: anteversion measurements in 10 hips. Acta Orthop Scand. 2004;75:261-4. https://doi.org/10.1080/00016470410001178 
  30. Barrett AR, Davies BL, Gomes MP, et al. Computer-assisted hip resurfacing surgery using the acrobot navigation system. Proc Inst Mech Eng H. 2007;221:773-85. https://doi.org/10.1243/09544119jeim283 
  31. Kayani B, Konan S, Ayuob A, Ayyad S, Haddad FS. The current role of robotics in total hip arthroplasty. EFORT Open Rev. 2019;4:618-25. https://doi.org/10.1302/2058-5241.4.180088 
  32. St Mart JP, Goh EL, Shah Z. Robotics in total hip arthroplasty: a review of the evolution, application and evidence base. EFORT Open Rev. 2020;5:866-73. https://doi.org/10.1302/2058-5241.5.200037 
  33. Kamath AF, Durbhakula SM, Pickering T, et al. Improved accuracy and fewer outliers with a novel CT-free robotic THA system in matched-pair analysis with manual THA. J Robot Surg. 2022;16:905-13. https://doi.org/10.1007/s11701-021-01315-3 Erratum in: J Robot Surg. 2022;16:915. https://doi.org/10.1007/s11701-021-01347-9 
  34. Migliorini F, Cuozzo F, Oliva F, Eschweiler J, Hildebrand F, Maffulli N. Imageless navigation for primary total hip arthroplasty: a meta-analysis study. J Orthop Traumatol. 2022;23:21. https://doi.org/10.1186/s10195-022-00636-9 
  35. Jayaram RH, Gillinov SM, Caruana DL, et al. Total hip arthroplasty imageless navigation does not reduce 90-day adverse events or five-year revisions in a large national cohort. J Arthroplasty. 2023;38:862-7. https://doi.org/10.1016/j.arth.2022.12.012 
  36. Marcovigi A, Ciampalini L, Perazzini P, Caldora P, Grandi G, Catani F. Evaluation of native femoral neck version and final stem version variability in patients with osteoarthritis undergoing robotically implanted total hip arthroplasty. J Arthroplasty. 2019;34:108-15. https://doi.org/10.1016/j.arth.2018.06.027 
  37. Fontalis A, Putzeys P, Plastow R, et al. Functional component positioning in total hip arthroplasty and the role of robotic-arm assistance in addressing spinopelvic pathology. Orthop Clin North Am. 2023;54:121-40. https://doi.org/10.1016/j.ocl.2022.11.003 
  38. Xu G, Ma M, Zhang S, Liu Y, Kong X, Chai W. [Application of Mako robot-assisted total hip arthroplasty in developmental dysplasia of the hip]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021;35:1233-9. Chinese. https://doi.org/10.7507/1002-1892.202105013 
  39. Zhu YS, Mo TT, Zhang JN, Jiang C. The use of Mako robot-assisted total hip arthroplasty in the treatment of Crowe IV developmental dysplasia of the hip. Asian J Surg. 2022;45:1333-5. https://doi.org/10.1016/j.asjsur.2022.02.008 
  40. Sato K, Sato A, Okuda N, Masaaki M, Koga H. A propensity score-matched comparison between Mako robotic arm-assisted system and conventional technique in total hip arthroplasty for patients with osteoarthritis secondary to developmental dysplasia of the hip. Arch Orthop Trauma Surg. 2023;143:2755-61. https://doi.org/10.1007/s00402-022-04524-z 
  41. Vigdorchik JM, Sharma AK, Aggarwal VK, Carroll KM, Jerabek SA. The use of robotic-assisted total hip arthroplasty in developmental dysplasia of the hip. Arthroplast Today. 2020;6:770-6. https://doi.org/10.1016/j.artd.2020.07.022 
  42. Chai W, Guo RW, Puah KL, Jerabek S, Chen JY, Tang PF. Use of robotic-arm assisted technique in complex primary total hip arthroplasty. Orthop Surg. 2020;12:686-91. https://doi.org/10.1111/os.12659 
  43. Hayashi S, Hashimoto S, Kuroda Y, et al. Robotic-arm assisted THA can achieve precise cup positioning in developmental dysplasia of the hip: a case control study. Bone Joint Res. 2021;10:629-38. https://doi.org/10.1302/2046-3758.1010.bjr2021-0095.r1 
  44. Domb BG, Redmond JM, Louis SS, et al. Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty. 2015;30:2208-18. https://doi.org/10.1016/j.arth.2015.06.059 
  45. Elson L, Dounchis J, Illgen R, et al. Precision of acetabular cup placement in robotic integrated total hip arthroplasty. Hip Int. 2015;25:531-6. https://doi.org/10.5301/hipint.5000289 
  46. Nodzo SR, Chang CC, Carroll KM, et al. Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position: a CT-based study. Bone Joint J. 2018;100-B:1303-9. https://doi.org/10.1302/0301-620x.100b10-bjj-2018-0201.r1 
  47. Illgen RL Nd, Bukowski BR, Abiola R, et al. Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int. 2017;30:365-72. 
  48. Nawabi DH, Conditt MA, Ranawat AS, et al. Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng H. 2013;227:302-9. https://doi.org/10.1177/0954411912468540 
  49. Gupta A, Redmond JM, Hammarstedt JE, Petrakos AE, Vemula SP, Domb BG. Does robotic-assisted computer navigation affect acetabular cup positioning in total hip arthroplasty in the obese patient? A comparison study. J Arthroplasty. 2015;30:2204-7. https://doi.org/10.1016/j.arth.2015.06.062 
  50. Smith R, Borukhov I, Hampp E, et al. Comparison of precision for manual versus robotic-assisted total hip arthroplasty performed by fellows. J Hip Surg. 2020;4:117-23. https://doi.org/10.1055/s-0040-1714333 
  51. Suarez-Ahedo C, Gui C, Martin TJ, Chandrasekaran S, Lodhia P, Domb BG. Robotic-arm assisted total hip arthroplasty results in smaller acetabular cup size in relation to the femoral head size: a matched-pair controlled study. Hip Int. 2017;27:147-52. https://doi.org/10.5301/hipint.5000418 
  52. Redmond JM, Gupta A, Hammarstedt JE, Petrakos AE, Finch NA, Domb BG. The learning curve associated with robotic-assisted total hip arthroplasty. J Arthroplasty. 2015;30:50-4. https://doi.org/10.1016/j.arth.2014.08.003 
  53. Heng YY, Gunaratne R, Ironside C, Taheri A. Conventional vs robotic arm assisted total hip arthroplasty (THA) surgical time, transfusion rates, length of stay, complications and learning curve. J Arthritis. 2018;7:272. https://doi.org/10.4172/2167-7921.1000272 
  54. Kong X, Yang M, Jerabek S, Zhang G, Chen J, Chai W. A retrospective study comparing a single surgeon's experience on manual versus robot-assisted total hip arthroplasty after the learning curve of the latter procedure - a cohort study. Int J Surg. 2020;77:174-80. https://doi.org/10.1016/j.ijsu.2020.03.067 
  55. Ng N, Gaston P, Simpson PM, Macpherson GJ, Patton JT, Clement ND. Robotic arm-assisted versus manual total hip arthroplasty: a systematic review and meta-analysis. Bone Joint J. 2021;103-B:1009-20. https://doi.org/10.1302/0301-620x.103b6.bjj-2020-1856.r1 
  56. Bukowski BR, Anderson P, Khlopas A, Chughtai M, Mont MA, Illgen RL 2nd. Improved functional outcomes with robotic compared with manual total hip arthroplasty. Surg Technol Int. 2016;29:303-8. 
  57. Singh JA, Schleck C, Harmsen S, Lewallen D. Clinically important improvement thresholds for Harris Hip Score and its ability to predict revision risk after primary total hip arthroplasty. BMC Musculoskelet Disord. 2016;17:256. https://doi.org/10.1186/s12891-016-1106-8 
  58. Perets I, Walsh JP, Mu BH, et al. Short-term clinical outcomes of robotic-arm assisted total hip arthroplasty: a pair-matched controlled study. Orthopedics. 2021;44:e236-42. https://doi.org/10.3928/01477447-20201119-10 
  59. Longo UG, De Salvatore S, Piergentili I, et al. Total hip arthroplasty: minimal clinically important difference and patient acceptable symptom state for the forgotten joint score 12. Int J Environ Res Public Health. 2021;18:2267. https://doi.org/10.3390/ijerph18052267 
  60. Domb BG, Chen JW, Lall AC, Perets I, Maldonado DR. Minimum 5-year outcomes of robotic-assisted primary total hip arthroplasty with a nested comparison against manual primary total hip arthroplasty: a propensity score-matched study. J Am Acad Orthop Surg. 2020;28:847-56. https://doi.org/10.5435/jaaos-d-19-00328 
  61. Han PF, Chen CL, Zhang ZL, et al. Robotics-assisted versus conventional manual approaches for total hip arthroplasty: a systematic review and meta-analysis of comparative studies. Int J Med Robot. 2019;15:e1990. https://doi.org/10.1002/rcs.1990 
  62. Clement ND, Gaston P, Bell A, et al. Robotic arm-assisted versus manual total hip arthroplasty. Bone Joint Res. 2021;10:22-30. https://doi.org/10.1302/2046-3758.101.bjr-2020-0161.r1 
  63. Bendich I, Vigdorchik JM, Sharma AK, et al. Robotic assistance for posterior approach total hip arthroplasty is associated with lower risk of revision for dislocation when compared to manual techniques. J Arthroplasty. 2022;37:1124-9. https://doi.org/10.1016/j.arth.2022.01.085 
  64. Shaw JH, Rahman TM, Wesemann LD, Z Jiang C, G Lindsay-Rivera K, Davis JJ. Comparison of postoperative instability and acetabular cup positioning in robotic-assisted versus traditional total hip arthroplasty. J Arthroplasty. 2022;37(8S):S881-9. https://doi.org/10.1016/j.arth.2022.02.002 
  65. King C, Chakour K, Kim Y, Luu H, Martell J. Robotic-assisted total hip arthroplasty reduces symptomatic postoperative trochanteric bursitis. Orthop Proc. 2020;102-B(S1):146. https://doi.org/10.1302/1358-992X.2020.1.146 
  66. Teamhri. How much does minimally invasive and robotic hip replacement surgery cost? [Internet]. Phoenix (AZ): Hip Replacement Info; 2023 Jun 4 [cited 2023 May 3]. Available from: https://hip-replacement.info/how-much-does-minimally-invasive-and-robotic-hip-replacement-surgery-cost/ 
  67. Liow MHL, Chin PL, Pang HN, Tay DK, Yeo SJ. THINK surgical TSolution-One® (Robodoc) total knee arthroplasty. SICOT J. 2017;3:63. https://doi.org/10.1051/sicotj/2017052 
  68. Pierce J, Needham K, Adams C, Coppolecchia A, Lavernia C. Robotic-assisted total hip arthroplasty: an economic analysis. J Comp Eff Res. 2021;10:1225-34. https://doi.org/10.2217/cer2020-0255 
  69. Barsoum W, Gregory D, Needham K, et al. Advantages of robotic arm-assisted total hip arthroplasty: a 90-day episode-of-care clinical utility and cost analysis. J Comp Eff Res. 2023;12:e220208. https://doi.org/10.57264/cer-2022-0208 
  70. Maldonado DR, Go CC, Kyin C, et al. Robotic arm-assisted total hip arthroplasty is more cost-effective than manual total hip arthroplasty: a Markov model analysis. J Am Acad Orthop Surg. 2021;29:e168-77. https://doi.org/10.5435/jaaosd-20-00498 
  71. Abbruzzese K, Valentino AL, Scholl L, et al. Physical and mental demand during total hip arthroplasty. Orthop Clin North Am. 2022;53:413-9. https://doi.org/10.1016/j.ocl.2022.06.005