DOI QR코드

DOI QR Code

Effects of chrysin on hydrogen peroxide productions in RAW 264.7 mouse macrophages stimulated by lipoteichoic acid and poly-IC

크리신(chrysin)이 리포테이코산과 poly-IC로 자극된 마우스 대식세포 RAW 264.7의 hydrogen peroxide 생성에 미치는 영향

  • Wansu Park (Department of Pathology, College of Korean Medicine, Gachon University)
  • 박완수 (가천대학교 한의과대학 병리학교실)
  • Received : 2024.06.10
  • Accepted : 2024.07.25
  • Published : 2024.07.30

Abstract

Objectives : This study aimed to elucidate antioxidant activity of chrysin in polyinosinic-polycytidylic acid (poly-IC) and lipoteichoic acid-induced RAW 264.7 mouse macrophages. Methods : RAW 264.7 co-stimulated with poly-IC and lipoteichoic acid were incubated with chrysin at concentrations of 25 and 50 µM. Hydrogen peroxide production was measured with dihydrorhodamine 123 assay. Nitric Oxide (NO) production was evaluated by griess reagent assay. Results : For 16 h, 18 h, 20 h, 22 h, and 24 h incubation, chrysin at the concentration of 25 and 50 µM significantly suppressed hydrogen peroxide production in poly-IC and lipoteichoic acid-induced RAW 264.7. In details, production of hydrogen peroxide in 'poly-IC and lipoteichoic acid'-stimulated RAW 264.7 treated for 16 h with chrysin at concentrations of 25 and 50 µM was 83.84% and 79.3% of the control group treated with poly-IC and lipoteichoic acid only, respectively; the production of hydrogen peroxide for 18 h was 84.36% and 79.93%, respectively; production of hydrogen peroxide for 20 h was 85.68% and 80.22%, respectively; production of hydrogen peroxide for 22 h was 85.81% and 79.95%, respectively; production of hydrogen peroxide for 24 h was 86.01% and 80.18%, respectively. Additionally, chrysin at the concentration of 5, 10, 25, and 50 µM significantly inhibited NO production in THP-1 human monocytic cell line. Conclusions : Chrysin might have anti-oxidative activity related to its inhibition of hydrogen peroxide production in 'poly-IC and lipoteichoic acid'-stimulated RAW 264.7.

Keywords

Acknowledgement

본 논문은 2024년도 가천대학교 교내연구비(연구년연구수행) 지원에 의한 결과입니다.

References

  1. Ivanov AV, Bartosch B, Isaguliants MG. Oxidative Stress in Infection and Consequent Disease. Oxid Med Cell Longev. 2017;2017:3496043. doi: 10.1155/2017/3496043. 
  2. Foo J, Bellot G, Pervaiz S, Alonso S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 2022 Jul;30(7):679-692. doi: 10.1016/j.tim.2021.12.011. 
  3. Yang X, Liu X, Nie Y, Zhan F, Zhu B. Oxidative stress and ROS-mediated cellular events in RSV infection: potential protective roles of antioxidants. Virol J. 2023 Oct 5;20(1):224. doi: 10.1186/s12985-023-02194-w. 
  4. Yoon SB, Lee YJ, Park SK, Kim HC, Bae H, Kim HM, Ko SG, Choi HY, Oh MS, Park W. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J Ethnopharmacol. 2009 Sep 7;125(2):286-90. doi: 10.1016/j.jep.2009.06.027. 
  5. Wang ZL, Wang S, Kuang Y, Hu ZM, Qiao X, Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis. Pharm Biol. 2018 Dec;56(1):465-484. doi: 10.1080/13880209.2018.1492620. 
  6. Shao ZH, Li CQ, Vanden Hoek TL, Becker LB, Schumacker PT, Wu JA, Attele AS, Yuan CS. Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes. J Mol Cell Cardiol. 1999 ; 31(10) : 1885-95. doi: 10.1006/jmcc.1999.1021. 
  7. Park W. Effect of Scutellariae Radix Water Extract on Hydrogen Peroxide Production in RAW 264.7 Mouse Macrophages. Kor. J. Herbology. 2011 ; 26(1) : 53-8. doi.org/10.6116/kjh.2011.26.1.053. 
  8. Song Q, Peng S, Zhu X. Baicalein protects against MPP+/MPTP-induced neurotoxicity by ameliorating oxidative stress in SH-SY5Y cells and mouse model of Parkinson's disease. Neurotoxicology. 2021 ; 87 : 188-194. doi: 10.1016/j.neuro.2021.10.003. 
  9. Li D, Shi G, Wang J, Zhang D, Pan Y, Dou H, Hou Y. Baicalein ameliorates pristane-induced lupus nephritis via activating Nrf2/HO-1 in myeloid-derived suppressor cells. Arthritis Res Ther. 2019 ; 21(1) : 105. doi: 10.1186/s13075-019-1876-0. 
  10. Oh CS, Park W. Effects of Baicalein on hydrogen peroxide productions in RAW 264.7 macrophages stimulated by lipoteichoic acid. Kor. J. Herbology. 2022;37(5):53-61. doi: 10.6116/kjh.2022.37.5.53. 
  11. Park W. Effects of baicalein on hydrogen peroxide productions in RAW 264.7 mouse macrophages stimulated by poly-IC and lipoteichoic acid. Kor. J. Herbology. 2023;38(4):11-19. https://doi.org/10.6116/kjh.2023.38.4.11. 
  12. Kim YJ, Kim HJ, Lee JY, Kim DH, Kang MS, Park W. Anti-Inflammatory Effect of Baicalein on Polyinosinic⁻Polycytidylic Acid-Induced RAW 264.7 Mouse Macrophages. Viruses. 2018 ; 10(5) : 224. doi: 10.3390/v10050224. 
  13. Effects of baicalein on hydrogen peroxide productions in mouse macrophages stimulated by lipopolysaccharide and peptidoglycan. Kor. J. Herbol. 2023;38(6):45-52. doi: 10.6116/kjh.2023.38.6.45. 
  14. Lee JY, Park W. Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnol. Bioprocess Eng. 2015 ; 20(6) : 1026-1034. doi: 10.1007/s12257-015-0416-2. 
  15. Chen W, Jia Z, Pan MH, Anandh Babu PV. Natural Products for the Prevention of Oxidative Stress-Related Diseases: Mechanisms and Strategies. Oxid Med Cell Longev. 2016;2016:4628502. doi: 10.1155/2016/4628502. 
  16. Salama A, Asaad GF, Shaheen A. Chrysin ameliorates STZ-induced diabetes in rats: possible impact of modulation of TLR4/NF-κβ pathway. Res Pharm Sci. 2021 Nov 11;17(1):1-11. doi: 10.4103/1735-5362.329921. 
  17. Li Y, He M, Zhang W, Yang M, Ding Y, Xu S, Gu J, Li Y, Yin J, Gao Y. Antioxidant Small Molecule Compound Chrysin Promotes the Self-Renewal of Hematopoietic Stem Cells. Front Pharmacol. 2020 Apr 2;11:399. doi: 10.3389/fphar.2020.00399. 
  18. Salari N, Faraji F, Jafarpour S, Faraji F, Rasoulpoor S, Dokaneheifard S, Mohammadi M. Anti-cancer Activity of Chrysin in Cancer Therapy: a Systematic Review. Indian J Surg Oncol. 2022 Dec;13(4):681-690. doi: 10.1007/s13193-022-01550-6. 
  19. Attia H, Albekairi N, Albdeirat L, Soliman A, Rajab R, Alotaibi H, Ali R, Badr A. Chrysin Attenuates Fructose-Induced Nonalcoholic Fatty Liver in Rats via Antioxidant and Anti-Inflammatory Effects: The Role of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. Oxid Med Cell Longev. 2022 Jun 8;2022:9479456. doi: 10.1155/2022/9479456. 
  20. Farkhondeh T, Samarghandian S, Bafandeh F. The Cardiovascular Protective Effects of Chrysin: A Narrative Review on Experimental Researches. Cardiovasc Hematol Agents Med Chem. 2019;17(1):17-27. doi: 10.2174/1871525717666190114145137. 
  21. Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, Samarghandian S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int. 2021 Apr 15;21(1):214. doi: 10.1186/s12935-021-01906-y. 
  22. Lim HK, Kwon HJ, Lee GS, Moon JH, Jung J. Chrysin-Induced G Protein-Coupled Estrogen Receptor Activation Suppresses Pancreatic Cancer. Int J Mol Sci. 2022 Aug 26;23(17):9673. doi: 10.3390/ijms23179673. 
  23. Newman SL. Macrophages in host defense against Histoplasma capsulatum. Trends Microbiol. 1999 ; 7(2) : 67-71. doi: 10.1016/s0966-842x(98)01431-0. 
  24. Jantsch J, Chikkaballi D, Hensel M. Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev. 2011 ; 240(1) : 185-95. doi: 10.1111/j.1600-065X.2010.00981.x. 
  25. Tewari D, Sah AN, Bawari S, Nabavi SF, Dehpour AR, Shirooie S, Braidy N, Fiebich BL, Vacca RA, Nabavi SM. Role of Nitric Oxide in Neurodegeneration: Function, Regulation, and Inhibition. Curr Neuropharmacol. 2021;19(2):114-126. doi: 10.2174/1570159X18666200429001549. 
  26. Tsopka IC, Hadjipavlou-Litina D. Hybrids as NO Donors. Int J Mol Sci. 2021 Sep 10;22(18):9788. doi: 10.3390/ijms22189788. 
  27. Kershenobich Stalnikowitz D, Weissbrod AB. Liver fibrosis and inflammation. A review. Ann Hepatol. 2003 Oct-Dec;2(4):159-63. doi: 10.1016/S1665-2681(19)32127-1. 
  28. Hemmrich K, Thomas GP, Abberton KM, Thompson EW, Rophael JA, Penington AJ, Morrison WA. Monocyte chemoattractant protein-1 and nitric oxide promote adipogenesis in a model that mimics obesity. Obesity (Silver Spring). 2007 Dec;15(12):2951-7. doi: 10.1038/oby.2007.352.