DOI QR코드

DOI QR Code

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino (Department of Trauma and Orthopaedic Surgery, University College Hospital) ;
  • Andreas Fontalis (Department of Trauma and Orthopaedic Surgery, University College Hospital) ;
  • Ahmed Magan (Department of Trauma and Orthopaedic Surgery, University College Hospital) ;
  • Ricci Plastow (Department of Trauma and Orthopaedic Surgery, University College Hospital) ;
  • Fares S. Haddad (Department of Trauma and Orthopaedic Surgery, University College Hospital)
  • Received : 2023.06.15
  • Accepted : 2023.08.10
  • Published : 2024.03.01

Abstract

Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

Keywords

References

  1. Naziri Q, Burekhovich SA, Mixa PJ, et al. The trends in robotic-assisted knee arthroplasty: a statewide database study. J Orthop. 2019;16:298-301. https://doi.org/10.1016/j.jor.2019.04.020
  2. Mancino F, Cacciola G, Di Matteo V, et al. Reconstruction options and outcomes for acetabular bone loss in revision hip arthroplasty. Orthop Rev (Pavia). 2020;12(Suppl 1):8655. https://doi.org/10.4081/or.2020.8655
  3. Ogilvie A, Kim WJ, Asirvatham RD, Fontalis A, Putzeys P, Haddad FS. Robotic-arm-assisted total hip arthroplasty: a review of the workflow, outcomes and its role in addressing the challenge of spinopelvic imbalance. Medicina (Kaunas). 2022;58:1616. https://doi.org/10.3390/medicina58111616
  4. Mancino F, Cacciola G, Di Matteo V, et al. Surgical implications of the hip-spine relationship in total hip arthroplasty. Orthop Rev (Pavia). 2020;12(Suppl 1):8656. https://doi.org/10.4081/or.2020.8656
  5. Fontalis A, Raj RD, Kim WJ, et al. Functional implant positioning in total hip arthroplasty and the role of roboticarm assistance. Int Orthop. 2023;47:573-84. https://doi.org/10.1007/s00264-022-05646-0
  6. Fontalis A, Putzeys P, Plastow R, et al. Functional component positioning in total hip arthroplasty and the role of roboticarm assistance in addressing spinopelvic pathology. Orthop Clin North Am. 2023;54:121-40. https://doi.org/10.1016/j.ocl.2022.11.003
  7. Hassani H, Cherix S, Ek ET, Rudiger HA. Comparisons of preoperative three-dimensional planning and surgical reconstruction in primary cementless total hip arthroplasty. J Arthroplasty. 2014;29:1273-7. https://doi.org/10.1016/j.arth.2013.12.033
  8. Huppertz A, Radmer S, Asbach P, et al. Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: radiation exposure and cost analysis. Eur J Radiol. 2011;78:406-13. https://doi.org/10.1016/j.ejrad.2009.11.024
  9. Della Valle AG, Padgett DE, Salvati EA. Preoperative planning for primary total hip arthroplasty. J Am Acad Orthop Surg. 2005;13:455-62. https://doi.org/10.5435/00124635-200511000-00005
  10. Sariali E, Mauprivez R, Khiami F, Pascal-Mousselard H, Catonne Y. Accuracy of the preoperative planning for cementless total hip arthroplasty. A randomised comparison between three-dimensional computerised planning and conventional templating. Orthop Traumatol Surg Res. 2012;98:151-8. https://doi.org/10.1016/j.otsr.2011.09.023
  11. Kobayashi H, Cech A, Kase M, et al. Pre-operative templating in THA. Part II: a CT-based strategy to correct architectural hip deformities. Arch Orthop Trauma Surg. 2020;140:551-62. https://doi.org/10.1007/s00402-020-03341-6 Erratum in: Arch Orthop Trauma Surg. 2020;140:1585 https://doi.org/10.1007/s00402-020-03595-0
  12. Di Laura A, Henckel J, Hothi H, Hart A. Can 3D surgical planning and patient specific instrumentation reduce hip implant inventory? A prospective study. 3D Print Med. 2020;6:25. https://doi.org/10.1186/s41205-020-00077-2
  13. Chen X, Wang Y, Ma R, et al. Validation of CT-based three-dimensional preoperative planning in comparison with acetate templating for primary total hip arthroplasty. Orthop Surg. 2022;14:1152-60. https://doi.org/10.1111/os.13298
  14. Moralidou M, Di Laura A, Henckel J, Hothi H, Hart AJ. Three-dimensional pre-operative planning of primary hip arthroplasty: a systematic literature review. EFORT Open Rev. 2020;5:845-55. https://doi.org/10.1302/2058-5241.5.200046
  15. Kim JT, Lee J, Lee YK, et al. What is the tolerated width of periacetabular osteophytes to avoid impingement in cement-less THA?: a three-dimensional simulation study. Arch Orthop Trauma Surg. 2018;138:1165-72. https://doi.org/10.1007/s00402-018-2982-1
  16. Chalmers BP, Sculco PK, Sierra RJ, Trousdale RT, Berry DJ. Iliopsoas impingement after primary total hip arthroplasty: operative and nonoperative treatment outcomes. J Bone Joint Surg Am. 2017;99:557-64. https://doi.org/10.2106/JBJS.16.00244
  17. Finsterwald M, Mancino F, Waters G, et al. Endoscopic tendon release for iliopsoas impingement after total hip arthroplasty-excellent clinical outcomes and low failure rates at short-term follow-up. Arthroscopy. Published online August 5, 2023; https://doi.org/10.1016/j.arthro.2023.07.040
  18. Barrack RL, Krempec JA, Clohisy JC, et al. Accuracy of acetabular component position in hip arthroplasty. J Bone Joint Surg Am. 2013;95:1760-8. https://doi.org/10.2106/JBJS.L.01704
  19. Beverland DE, O'Neill CK, Rutherford M, Molloy D, Hill JC. Placement of the acetabular component. Bone Joint J. 2016;98-B(1 Suppl A):37-43. https://doi.org/10.1302/0301-620X.98B1.36343
  20. Sariali E, Mouttet A, Pasquier G, Durante E, Catone Y. Accuracy of reconstruction of the hip using computerised three-dimensional pre-operative planning and a cementless modular neck. J Bone Joint Surg Br. 2009;91:333-40. https://doi.org/10.1302/0301-620X.91B3.21390
  21. Bukowski BR, Sandhu KP, Bernatz JT, et al. CT required to perform robotic-assisted total hip arthroplasty can identify previously undiagnosed osteoporosis and guide femoral fixation strategy. Bone Joint J. 2023;105-B:254-60. https://doi.org/10.1302/0301-620X.105B3.BJJ-2022-0870.R1
  22. Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 Adults. J Bone Miner Res. 2016;31:1835-40. https://doi.org/10.1002/jbmr.2856
  23. Abdel MP, Watts CD, Houdek MT, Lewallen DG, Berry DJ. Epidemiology of periprosthetic fracture of the femur in 32 644 primary total hip arthroplasties: a 40-year experience. Bone Joint J. 2016;98-B:461-7. https://doi.org/10.1302/0301-620X.98B4.37201 Erratum in: Bone Joint J. 2020;102-B:1782. https://doi.org/10.1302/0301-620X.102B12.BJJ-2020-00013
  24. Bernatz JT, Brooks AE, Squire MW, Illgen RI 2nd, Binkley NC, Anderson PA. Osteoporosis is common and undertreated prior to total joint arthroplasty. J Arthroplasty. 2019;34:1347-53. https://doi.org/10.1016/j.arth.2019.03.044
  25. Mainard D, Barbier O, Knafo Y, Belleville R, Mainard-Simard L, Gross JB. Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: a pilot study. Orthop Traumatol Surg Res. 2017;103:531-6. https://doi.org/10.1016/j.otsr.2017.03.001
  26. Knafo Y, Houfani F, Zaharia B, Egrise F, Clerc-Urmes I, Mainard D. Value of 3D preoperative planning for primary total hip arthroplasty based on biplanar weightbearing radiographs. Biomed Res Int. 2019;2019:1932191. https://doi.org/10.1155/2019/1932191
  27. Wu P, Liu Q, Fu M, et al. Value of computed tomography-based three-dimensional pre-operative planning in cup placement in total hip arthroplasty with dysplastic acetabulum. J Invest Surg. 2019;32:607-13. https://doi.org/10.1080/08941939.2018.1444828
  28. Schiffner E, Latz D, Jungbluth P, et al. Is computerised 3D templating more accurate than 2D templating to predict size of components in primary total hip arthroplasty? Hip Int. 2019;29:270-5. https://doi.org/10.1177/1120700018776311
  29. Inoue D, Kabata T, Maeda T, et al. Value of computed tomography-based three-dimensional surgical preoperative planning software in total hip arthroplasty with developmental dysplasia of the hip. J Orthop Sci. 2015;20:340-6. https://doi.org/10.1007/s00776-014-0683-3
  30. Kniesel B, Konstantinidis L, Hirschmuller A, Sudkamp N, Helwig P. Digital templating in total knee and hip replacement: an analysis of planning accuracy. Int Orthop. 2014;38:733-9. https://doi.org/10.1007/s00264-013-2157-1
  31. Schmidutz F, Steinbruck A, Wanke-Jellinek L, Pietschmann M, Jansson V, Fottner A. The accuracy of digital templating: a comparison of short-stem total hip arthroplasty and conventional total hip arthroplasty. Int Orthop. 2012;36:1767-72. https://doi.org/10.1007/s00264-012-1532-7
  32. Bishi H, Smith JBV, Asopa V, Field RE, Wang C, Sochart DH. Comparison of the accuracy of 2D and 3D templating methods for planning primary total hip replacement: a systematic review and meta-analysis. EFORT Open Rev. 2022;7:70-83. https://doi.org/10.1530/EOR-21-0060
  33. Huppertz A, Lembcke A, Sariali el-H, et al. Low dose computed tomography for 3D planning of total hip arthroplasty: evaluation of radiation exposure and image quality. J Comput Assist Tomogr. 2015;39:649-56. https://doi.org/10.1097/RCT.0000000000000271
  34. Kaiser D, Hoch A, Rahm S, Stern C, Sutter R, Zingg PO. Combining the advantages of 3-D and 2-D templating of total hip arthroplasty using a new tin-filtered ultra-low-dose CT of the hip with comparable radiation dose to conventional radiographs. Arch Orthop Trauma Surg. 2023;143:5345-52. https://doi.org/10.1007/s00402-022-04697-7
  35. Christen B, Tanner L, Ettinger M, Bonnin MP, Koch PP, Calliess T. Comparative cost analysis of four different computer-assisted technologies to implant a total knee arthroplasty over conventional instrumentation. J Pers Med. 2022;12:184. https://doi.org/10.3390/jpm12020184
  36. Hassebrock JD, Makovicka JL, Clarke HD, Spangehl MJ, Beauchamp CP, Schwartz AJ. Frequency, cost, and clinical significance of incidental findings on preoperative planning images for computer-assisted total joint arthroplasty. J Arthroplasty. 2020;35:945-9.e1. https://doi.org/10.1016/j.arth.2019.11.030
  37. Tran G, Khalil LS, Wrubel A, Klochko CL, Davis JJ, Soliman SB. Incidental findings detected on preoperative CT imaging obtained for robotic-assisted joint replacements: clinical importance and the effect on the scheduled arthroplasty. Skeletal Radiol. 2021;50:1151-61. https://doi.org/10.1007/s00256-020-03660-0
  38. Kayani B, Konan S, Thakrar RR, Huq SS, Haddad FS. Assuring the long-term total joint arthroplasty: a triad of variables. Bone Joint J. 2019;101-B(1_Supple_A):11-8. https://doi.org/10.1302/0301-620X.101B1.BJJ-2018-0377.R1
  39. Illgen RL Nd, Bukowski BR, Abiola R, et al. Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int. 2017;30:365-72.
  40. El Bitar YF, Jackson TJ, Lindner D, Botser IB, Stake CE, Domb BG. Predictive value of robotic-assisted total hip arthroplasty. Orthopedics. 2015;38:e31-7. https://doi.org/10.3928/01477447-20150105-57
  41. Matsuki Y, Imagama T, Tokushige A, Yamazaki K, Sakai T. Accuracy of cup placement using computed tomography-based navigation system in total hip arthroplasty through the direct anterior approach. J Orthop Sci. 2023;28:370-5. https://doi.org/10.1016/j.jos.2021.10.018
  42. Clement ND, Patrick-Patel RS, MacDonald D, Breusch SJ. Total hip replacement: increasing femoral offset improves functional outcome. Arch Orthop Trauma Surg. 2016;136:1317-23. https://doi.org/10.1007/s00402-016-2527-4
  43. Kurtz WB, Ecker TM, Reichmann WM, Murphy SB. Factors affecting bony impingement in hip arthroplasty. J Arthroplasty. 2010;25:624-34.e1-2. https://doi.org/10.1016/j.arth.2009.03.024
  44. Suarez-Ahedo C, Gui C, Martin TJ, Chandrasekaran S, Lodhia P, Domb BG. Robotic-arm assisted total hip arthroplasty results in smaller acetabular cup size in relation to the femoral head size: a matched-pair controlled study. Hip Int. 2017;27:147-52. https://doi.org/10.5301/hipint.5000418
  45. Mancino F, Jones CW, Sculco TP, Sculco PK, Maccauro G, De Martino I. Survivorship and clinical outcomes of constrained acetabular liners in primary and revision total hip arthroplasty: a systematic review. J Arthroplasty. 2021;36:3028-41. https://doi.org/10.1016/j.arth.2021.04.028
  46. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217-20.
  47. Callanan MC, Jarrett B, Bragdon CR, et al. The John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res. 2011;469:319-29. https://doi.org/10.1007/s11999-010-1487-1
  48. Abdel MP, von Roth P, Jennings MT, Hanssen AD, Pagnano MW. What safe zone? The vast majority of dislocated THAs are within the Lewinnek safe zone for acetabular component position. Clin Orthop Relat Res. 2016;474:386-91. https://doi.org/10.1007/s11999-015-4432-5
  49. Tezuka T, Heckmann ND, Bodner RJ, Dorr LD. Functional safe zone is superior to the Lewinnek safe zone for total hip arthroplasty: why the Lewinnek safe zone is not always predictive of stability. J Arthroplasty. 2019;34:3-8. https://doi.org/10.1016/j.arth.2018.10.034
  50. Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res. 2014;472:329-36. https://doi.org/10.1007/s11999-013-3253-7
  51. Domb BG, Redmond JM, Louis SS, et al. Accuracy of component positioning in 1980 total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplasty. 2015;30:2208-18. https://doi.org/10.1016/j.arth.2015.06.059
  52. Clement ND, Gaston P, Bell A, et al. Robotic arm-assisted versus manual total hip arthroplasty. Bone Joint Res. 2021;10:22-30. https://doi.org/10.1302/2046-3758.101.BJR-2020-0161.R1
  53. Kamara E, Robinson J, Bas MA, Rodriguez JA, Hepinstall MS. Adoption of robotic vs fluoroscopic guidance in total hip arthroplasty: is acetabular positioning improved in the learning curve? J Arthroplasty. 2017;32:125-30. https://doi.org/10.1016/j.arth.2016.06.039
  54. Hohmann E, Bryant A, Tetsworth K. A comparison between imageless navigated and manual freehand technique acetabular cup placement in total hip arthroplasty. J Arthroplasty. 2011;26:1078-82. https://doi.org/10.1016/j.arth.2010.11.009
  55. Parratte S, Argenson JN. Validation and usefulness of a computer-assisted cup-positioning system in total hip arthroplasty. A prospective, randomized, controlled study. J Bone Joint Surg Am. 2007;89:494-9. https://doi.org/10.2106/JBJS.F.00529
  56. Dorr LD, Malik A, Dastane M, Wan Z. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res. 2009;467:119-27. https://doi.org/10.1007/s11999-008-0598-4
  57. Marcovigi A, Ciampalini L, Perazzini P, Caldora P, Grandi G, Catani F. Evaluation of native femoral neck version and final stem version variability in patients with osteoarthritis undergoing robotically implanted total hip arthroplasty. J Arthroplasty. 2019;34:108-15. https://doi.org/10.1016/j.arth.2018.06.027
  58. O'Connor PB, Thompson MT, Esposito CI, et al. The impact of functional combined anteversion on hip range of motion: a new optimal zone to reduce risk of impingement in total hip arthroplasty. Bone Jt Open. 2021;2:834-41. https://doi.org/10.1302/2633-1462.210.BJO-2021-0117.R1
  59. Dorr LD, Faugere MC, Mackel AM, Gruen TA, Bognar B, Malluche HH. Structural and cellular assessment of bone quality of proximal femur. Bone. 1993;14:231-42. https://doi.org/10.1016/8756-3282(93)90146-2
  60. Desai AS, Dramis A, Board TN. Leg length discrepancy after total hip arthroplasty: a review of literature. Curr Rev Musculoskelet Med. 2013;6:336-41. https://doi.org/10.1007/s12178-013-9180-0
  61. Hofmann AA, Skrzynski MC. Leg-length inequality and nerve palsy in total hip arthroplasty: a lawyer awaits! Orthopedics. 2000;23:943-4. https://doi.org/10.3928/0147-7447-20000901-20
  62. Tipton SC, Sutherland JK, Schwarzkopf R. The assessment of limb length discrepancy before total hip arthroplasty. J Arthroplasty. 2016;31:888-92. https://doi.org/10.1016/j.arth.2015.10.026
  63. Sariali E, Mueller M, Klouche S. A higher reliability with a computed tomography scan-based three dimensional technique than with a two dimensional measurement for lower limb discrepancy in total hip arthroplasty planning. Int Orthop. 2021;45:3129-37. https://doi.org/10.1007/s00264-021-05148-5
  64. Asayama I, Chamnongkich S, Simpson KJ, Kinsey TL, Mahoney OM. Reconstructed hip joint position and abductor muscle strength after total hip arthroplasty. J Arthroplasty. 2005;20:414-20. https://doi.org/10.1016/j.arth.2004.01.016
  65. Lecerf G, Fessy MH, Philippot R, et al. Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res. 2009;95:210-9. https://doi.org/10.1016/j.otsr.2009.03.010
  66. Luca DiGiovanni P, Gasparutto X, Armand S, Hannouche D. The modern state of femoral, acetabular, and global offsets in total hip arthroplasty: a narrative review. EFORT Open Rev. 2023;8:117-26. https://doi.org/10.1530/EOR-22-0039
  67. Sariali E, Klouche S, Mouttet A, Pascal-Moussellard H. The effect of femoral offset modification on gait after total hip arthroplasty. Acta Orthop. 2014;85:123-7. https://doi.org/10.3109/17453674.2014.889980
  68. Cassidy KA, Noticewala MS, Macaulay W, Lee JH, Geller JA. Effect of femoral offset on pain and function after total hip arthroplasty. J Arthroplasty. 2012;27:1863-9. https://doi.org/10.1016/j.arth.2012.05.001
  69. Renkawitz T, Weber T, Dullien S, et al. Leg length and offset differences above 5mm after total hip arthroplasty are associated with altered gait kinematics. Gait Posture. 2016;49:196-201. https://doi.org/10.1016/j.gaitpost.2016.07.011
  70. Mahmood SS, Mukka SS, Crnalic S, Wretenberg P, SayedNoor AS. Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop. 2016;87:36-41. https://doi.org/10.3109/17453674.2015.1091955
  71. Robinson M, Bornstein L, Mennear B, et al. Effect of restoration of combined offset on stability of large head THA. Hip Int. 2012;22:248-53. https://doi.org/10.5301/HIP.2012.9283
  72. Kanawade V, Dorr LD, Banks SA, Zhang Z, Wan Z. Precision of robotic guided instrumentation for acetabular component positioning. J Arthroplasty. 2015;30:392-7. https://doi.org/10.1016/j.arth.2014.10.021
  73. Peng Z, Lin X, Kuang X, Teng Z, Lu S. The application of topical vancomycin powder for the prevention of surgical site infections in primary total hip and knee arthroplasty: a meta-analysis. Orthop Traumatol Surg Res. 2021;107:102741. https://doi.org/10.1016/j.otsr.2020.09.006
  74. Dastane M, Dorr LD, Tarwala R, Wan Z. Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop Relat Res. 2011;469:429-36. https://doi.org/10.1007/s11999-010-1554-7
  75. Anderson CG, Brilliant ZR, Jang SJ, et al. Validating the use of 3D biplanar radiography versus CT when measuring femoral anteversion after total hip arthroplasty: a comparative study. Bone Joint J. 2022;104-B:1196-201. https://doi.org/10.1302/0301-620X.104B11.BJJ-2022-0194.R2
  76. Brenneis M, Braun S, van Drongelen S, et al. Accuracy of preoperative templating in total hip arthroplasty with special focus on stem morphology: a randomized comparison between common digital and three-dimensional planning using biplanar radiographs. J Arthroplasty. 2021;36:1149-55. https://doi.org/10.1016/j.arth.2020.10.016
  77. Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CW. Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol. 2015;25:3398-404. https://doi.org/10.1007/s00330-015-3756-6
  78. Hirschmann A, Buck FM, Herschel R, Pfirrmann CWA, Fucentese SF. Upright weight-bearing CT of the knee during flexion: changes of the patellofemoral and tibiofemoral articulations between 0° and 120°. Knee Surg Sports Traumatol Arthrosc. 2017;25:853-62. https://doi.org/10.1007/s00167-015-3853-8
  79. Rojas EO, Barbachan Mansur NS, Dibbern K, et al. Weight-bearing computed tomography for assessment of foot and ankle deformities: the Iowa experience. Iowa Orthop J. 2021;41:111-9. https://doi.org/10.1177/2473011421S00419
  80. Fontalis A, Kayani B, Haddad IC, Donovan C, Tahmassebi J, Haddad FS. Patient-reported outcome measures in conventional total hip arthroplasty versus robotic-arm assisted arthroplasty: a prospective cohort study with minimum 3 years' follow-up. J Arthroplasty. 2023;38(7S2):S324-9. https://doi.org/10.1016/j.arth.2023.04.045