DOI QR코드

DOI QR Code

Effects of Quenching and Tempering Process Conditions on the Microstructure and Hardness of SCM420 Alloy steel

SCM420 합금강의 미세조직 및 경도에 미치는 급냉 및 템퍼링 공정조건의 영향

  • Jun-Ha Lee (Department Materials Sci. & Engineering., Hanbat National University) ;
  • Kyung-Sik Shin (SERIM T&D Co., Ltd.) ;
  • Jeong-Min Kim (Department Materials Sci. & Engineering., Hanbat National University)
  • 이준하 (국립한밭대학교 신소재공학과) ;
  • 신경식 ((주)세림티앤디) ;
  • 김정민 (국립한밭대학교 신소재공학과)
  • Received : 2024.07.08
  • Accepted : 2024.07.24
  • Published : 2024.07.30

Abstract

To improve and control the mechanical properties of low alloy steel, the influence of quenching and tempering process conditions was investigated. In the case of quenching heat treatment, a comparison was made between the conventional method of heating to the austenite region followed by single quenching and a method involving double quenching, followed by high-temperature tempering. It was observed that specimens subjected to double quenching exhibited significantly finer tempered microstructures compared to those subjected to conventional quenching, resulting in noticeably higher hardness. Additionally, a study was conducted to investigate the variation in hardness with changes in tempering temperature and time after the same conventional quenching treatment. As expected, an increase in tempering temperature or time led to a decrease in hardness, and the correlation between hardness and the Hollomon-Jeffe Parameter was confirmed. It was also observed that during high-temperature tempering, the size of carbides significantly increased.

Keywords

Acknowledgement

본 연구는 중소벤처기업부 지역주력산업육성사업의 지원을 받아 수행되었음(과제번호 : S3364515).

References

  1. D. Ning, C.R. Dai, J.L. Wu, Y.D. Wang, Y.Q. Wang, Y. Jing, and J. Sun: Meter. Charact., 176 (2021) 111111
  2. M.H. Khani Sanij, S.S. Ghasemi Banadkouki, A.R. Mashreghi, and M. Moshrefifar: Mater. Design, 42 (2012) 339-346.
  3. J.L. Wang, R.T. Qian, S. Huang, and C.J. Shang: Metals, 13 (2023) 61
  4. E. Virtanen, C.J. Van Tyne, B.S. Levy, and G. Brada: J. Mater. Process. Tech. 213 (2013) 1364-1369.
  5. G. Krauss: Steel Research Int., 88 (2017) 170038
  6. E. Tkachev, S. Borisov, A. Belyakov, T. Kniaziuk, O.Vagina, S. Gaidar, and R. Kaibyshev: Mater. Sci, Eng. A, 868 (2023) 144757
  7. V. Dudko, D. Yuzbekova, S. Gaidar, S. Vetrova, and R. Kaibyshev: Metals, 12 (2022) 2177
  8. M.W. Tong, P.K.C. Venkatsurya, W.H. Zhou, R.D.K. Misra, B. Guo, K.G. Zhang, and W. Fan: Mater. Sci, Eng. A, 609 (2014) 209-216.
  9. E. Claesson, H. Magnusson, J. Kohlbrecher, M. Thuvander, and P. Hedstrom: Mater. Charact. 194 (2022) 112464
  10. W. Zhao, H. Zhou, L. Fang, F. Bai, H. Yi, N. Ali, L. Zhang, and G. Zhen: Steel Research Int., 92 (2021) 2000723
  11. Q. Zhao, Z. Qiao, and J. Dong: Metals, 13 (2023) 1495
  12. T. Simm, L. Sun, S. McAdam, P. Hill, M. Rawson, and K. Perkins: Materials, 10 (2017) 730
  13. W. Zhang, Z.H. Dong, X. Shang, S.G. Chen, L.J. Zhang, and X. Peng: Mater. Sci. Eng. A, 862 (2023) 144488
  14. X. Li, L. Cui, J. Li, Y. Chen, W. Han, S. Shonkwiler, and S. McMains: Mater. Design, 22 (2022) 111358
  15. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki: ISIJ Int., 45 (2005) 91-94.
  16. F.S. Vicente, J.C. Carrasco, R.F. Antoni, J.C.F. Taberner, and M.P. Guillamon: Metals, 11 (2011) 297
  17. A. Saha,J. Jung, and G.B. Olson: J. Computer-Aided Mater. Des., 14 (2007) 201-233,
  18. J. Park, J. Jeon, J. Lee, S.B. Son, S.J. Lee, and J.G. Jung: J. Korean Soc. Heat Treat., 36 (2023) 7-14.