DOI QR코드

DOI QR Code

Nb 첨가 합금강의 미세조직과 결정립 조대화 거동

Microstructure and Abnormal Grain Coarsening Behavior of Nb-microalloyed Steel

  • 김성진 (전북대학교 신소재공학부) ;
  • 최정후 (전북대학교 신소재공학부) ;
  • 김민희 (전북대학교 신소재공학부) ;
  • 류민환 (전북대학교 신소재공학부) ;
  • 박재현 (전북대학교 신소재공학부) ;
  • 신재혁 (전북대학교 신소재공학부) ;
  • 신우철 (전북대학교 신소재공학부) ;
  • 김민욱 (세아베스틸 기술연구소) ;
  • 정재길 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Sungjin Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jeonghu Choi (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Minhee Kim (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Minhwan Ryu (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jaehyun Park (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jaehyeok Sin (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Woochul Shin (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Minwook Kim (R&D Center, SeAH Besteel) ;
  • Jae-Gil Jung (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seok-Jae Lee (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 투고 : 2024.05.17
  • 심사 : 2024.06.24
  • 발행 : 2024.07.30

초록

SCr420H steel which is commonly utilized for automotive components requires the carburizing heat treatment process. Abnormal grain growth during this treatment significantly affects the mechanical properties of the steel parts. Consequently, a process designed to prevent abnormal grain growth at certain elevated temperatures is essential. For enhanced grain refinement, we considered the addition of Nb in SCr420H steel. The experimental condition of the carburizing heat treatment involved reheating the steel sample to temperatures between 940℃ and 1080℃. Using scanning electron microscopy, we examined the microstructure of specimens treated with the secondary solution, revealing an organization of bainite and ferrite. Transmission electron microscopy was utilized to determine the type, shape, and size of the carbonitrides, showing a high fraction of AlN at the secondary solution treatment temperature of approximately 1050℃ and of (Nb,Ti)(C,N) around 1200℃. AlN particles measured about 100 nm and (Nb,Ti)(C,N) about 50 nm. Optical microscopy was utilized to assess grain size variations at different secondary solution treatment temperatures. It is noted that the temperature at which abnormal grain coarsening occurred rose with increasing secondary solution treatment temperatures, indicating a greater influence of (Nb,Ti)(C,N) with higher heat treatment temperatures. This research provides reference data for preventing abnormal grain growth in Nb-added low alloy steels undergoing carburizing heat treatment.

키워드

과제정보

이 논문은 2024년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임 (RS-2024-00410332, 2024년 산업혁신인재성장지원사업).

참고문헌

  1. 김완두, 최병익, 한승우, 김정훈: 한국자동차공학회논문집 2(6) (1994), 1-8 
  2. 최인철, 오명훈: 열처리공학회지, 35(3) (2022), 139-149  https://doi.org/10.12656/JKSHT.2022.35.3.139
  3. Sugianto, A., Narazaki, M., Kogawara, M., Shirayori, A., Kim, S. Y., and Kubota, S.: J. Mater. Process. Technol., 209(7) (2009), 3597-3609  https://doi.org/10.1016/j.jmatprotec.2008.08.017
  4. Bharare, O. S., Sarve, S. A., Gengane, V. V., Sahane, A. S., and Jikar, P. C.: Mater. Today Proc., (2023) 
  5. 유동헌: 한국에너지기후변화학회학술대회, (2021), 34 
  6. 조은형: 한국표면공학회학술발표회초록집, (2021), 28 
  7. Sankowski, L., Kaiser, F., Schmitz, N., Schwotzer, C., and Pfeifer, H.: HTM J. Heat Treat. Mater., 78(1) (2023) 3-16  https://doi.org/10.1515/htm-2022-1038
  8. 안민주, 안인효, 류성기: 한국기계가공학회지, 10(1) (2011), 67-72  https://doi.org/10.1007/s12290-011-0172-4
  9. AlOgab, K. A., D. K. Matlock, and J. G. Speer: Proceedings of the 4th Saudi Technical Conference and Exposition, (2006) 
  10. Murata. K., Fukui. C., Sun. F., Chen. T. T., and Adachi. Y.: Materials., 17(1) (2023), 138, 
  11. Hannula, J., Kaijalainen, A., Porter, D., and Komi, J, J.: Phys. Conf. Ser., 1270(1) (2019), 12018 
  12. 위겸복, 정운태, 이경섭, 왕성도: 한국재료학회지, 2(1) (1992), 65-75  https://doi.org/10.1037/h0101235
  13. Jeanmaire, G., Dehmas, M., Redjaimia, A., Puech, S., and Fribourg, G.: Mater. Charact., 98(2014), 193-201  https://doi.org/10.1016/j.matchar.2014.11.001
  14. V.nagarin: Int. Heat Treat. Surf. Eng., 8(2) (2014), 80-85  https://doi.org/10.1179/1749514813Z.00000000098
  15. Li. X., Wu. P., Yang. R., Zhao. S., Zhang. S., Chen. S., and Wang. X: Mater.Des., 115 (2017), 165-169  https://doi.org/10.1016/j.matdes.2016.11.017
  16. JEKLIH, MIKROLEGIRANIH.: Mater. Tehnol., 49(3) (2015), 395-401  https://doi.org/10.17222/mit.2014.096
  17. Zhu, Y., Fan, S., Lian, X., and Min, N.: Materials., 14(4) (2024), 469 
  18. Fu, L. M., Wang, H. R., Wang, W., and Shan, A. D.: Mater. Sci. Technol., 27(6) (2011), 996-1001  https://doi.org/10.1179/1743284711Y.0000000001
  19. Alexis Graux, Sophie Cazottes, David De Castro, David San Martin, Carlos Capdevila, Jose Maria Cabrera, Silvia Molas, Sebastian Schreiber, Djordje Mirkovic , Frederic Danoix, Matthieu Bugnet, Damien Fabregue, Michel Perez: Acta Mater., 5(2019), 100233 
  20. Novikov, V. Y.: Scr. Mater., 37(4) (1997), 463-469  https://doi.org/10.1016/S1359-6462(97)00134-6
  21. 문준오, 이창희: 대한용접.접합학회지, 26(1) (2008), 76-82  https://doi.org/10.1111/j.0028-8292.1987.tb00245.x
  22. 최용원, 한민수, 김성종: 한국표면공학회지, 49(3) (2016), 274-279  https://doi.org/10.5695/JKISE.2016.49.3.274
  23. Sun, L. Y., Liu, X., Xu, X., Lei, S. W., Li, H. G., and Zhai, Q. J.: J. Orom. Steel Tes. Int., 29(10) (2022), 1513-1525  https://doi.org/10.1007/s42243-022-00789-1
  24. Yan, P., H. K. D. H. Bhadeshia.: Mater. Sci. Technol., 31(9) (2015), 1066-1076  https://doi.org/10.1179/1743284714Y.0000000673
  25. Hong, S. C., Lim, S. H., Hong, H. S., Lee, K. J., Shin, D. H., and Lee, K. S.: Mater. Sci. Eng., A, 355(2003), 341-248 
  26. Bansal, G. K., V. C. Srivastava, and S. Ghosh Chowdhury.: Mater. Sci. Eng., A, 769(2019), 138416 
  27. Hulka, Klaus, A. Kern, and U. Schriever.: Mater. Sci. Forum, 500(2005), 519-526  https://doi.org/10.4028/www.scientific.net/MSF.500-501.519
  28. He, H., Wang, F., Wang, W., and Zeng, J.: Steel Res. Int., 94(9) (2023), 20300133 
  29. Gong, Shuo, Liang Su, and Fuming Wang: Metall. Mater. Trans. A, 55(3) (2024), 910-922  https://doi.org/10.1007/s11661-023-07294-4
  30. Zhang, Y., Li, X., Liu, Y., Liu, C., Dong, J., Yu, L., and Li, H.: Mater. Charact., 169(2020), 110612 
  31. Verger-Gaugry, J-L., G. Ocampo, and J. D. Embury.: Metallography, 18(4) (1985), 381-393  https://doi.org/10.1016/0026-0800(85)90006-0
  32. Leap, M. J., Brown, E. L.: Mater. Sci. Technol, 18(9) (2002), 945-958  https://doi.org/10.1179/026708302225004937
  33. Okaguchi, Shuji., Tamotsu Hashimoto.: ISIJ Int., 32(3) (1992), 283-290  https://doi.org/10.2355/isijinternational.32.283
  34. 고석우, 이지민, 황병철: 대한금속.재료학회지, 58(11) (2020), 752-758  https://doi.org/10.3365/KJMM.2020.58.11.752
  35. Guiqin, Fu, Jin Duo, and Zhu Miaoyong.: JESTR, 8(4) (2015), 43-50  https://doi.org/10.25103/jestr.084.07
  36. Kim, J. M., Hong, S. Y. and Lee, K. J.: Mater. Sci. Forum, 879(2016), 921-925 https://doi.org/10.4028/www.scientific.net/MSF.879.921