References
- Adam, J.M., Parisi, F., Sagaseta, J. and Lu, X. (2018), "Research and practice on progressive collapse and robustness of building structures in the 21st century", Eng. Struct., 173(3), 122-149. https://doi.org/10.1016/j.engstruct.2018.06.082.
- Alberdi, R. and Khandelwal, K. (2015), "Comparison of robustness of metaheuristic algorithms for steel frame optimization", Eng. Struct., 102, 40-60. https://doi.org/10.1016/j.engstruct.2015.08.012.
- American Society of Civil Engineers (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures : ASCE/SEI 7-16.
- Artar, M. and Daloglu, A. T. (2015), "Optimum design of steel space frames with composite beams using genetic algorithm", Steel Compos. Struct., 19(2), 503-519. https://doi.org/10.12989/scs.2015.19.2.503.
- Bennage, W.A. and Dhingra, A.K. (1995), "Single and multiobjective structural optimization in discrete-continuous variables using simulated annealing", Int. J. Numer. Methods Eng., 38(16), 2753-2773. https://doi.org/10.1002/nme.1620381606.
- Benvidi, A., Mohammadi Dehcheshmeh, E., Safari, P., Broujerdian, V. and Huang, S.S. (2023), "Post-fire seismic performance of low-yielding-steel plate shear wall systems", Int. J. Civ. Eng., 21(10), 1661-1678. https://doi.org/10.1007/s40999-023-00856-y.
- Byfield, M., Mudalige, W., Morison, C. and Stoddart, E. (2014), "A review of progressive collapse research and regulations", Proc. Inst. Civ. Eng. Struct. Build., 167(8), 447-456. https://doi.org/10.1680/stbu.12.00023.
- Cassiano, D., D'Aniello, M., Rebelo, C., Landolfo, R. and da Silva, L.S. (2016), "Influence of seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479.
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frame structure based on the energy principle", Steel Compos. Struct., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553.
- Computers and Structures Inc. (2019), SAP2000 (19.1). Computers and Structures Inc.
- Degertekin, S.O. (2007), "A comparison of simulated annealing and genetic algorithm for optimum design of nonlinear steel space frames", Struct. Multidiscip. Optim., 34(4), 347-359. https://doi.org/10.1007/s00158-007-0096-4.
- Degertekin, S.O., Hayalioglu, M.S. and Ulker, M. (2008), "A hybrid tabu-simulated annealing heuristic algorithm for optimum design of steel frames", Steel Compos. Struct., 8(6), 475-490. https://doi.org/10.12989/scs.2008.8.6.475.
- Dehcheshmeh, E.M., Rashed, P., Broujerdian, V., Shakouri, A. and Aslani, F. (2023), "Predicting seismic collapse safety of post-fire steel moment frames", Buildings, 13(4). https://doi.org/10.3390/buildings13041091.
- Design of Buildings to Resist Progressive Collapse (2005).
- Do, B. and Ohsaki, M. (2021), "Gaussian mixture model for robust design optimization of planar steel frames", Struct. Multidiscip. Optim., 63(1), 137-160. https://doi.org/10.1007/s00158-020-02676-3.
- Erguclu, E. (2013), "A Recent Challange in Structural Steel Design: Progressive Collapse", METU.
- Esfandiari, M.J., Urgessa, G.S., Sheikholarefin, S. and Dehghan Manshadi, S.H. (2018), "Optimization of reinforced concrete frames subjected to historical time-history loadings using DMPSO algorithm", Struct. Multidiscip. Optim., 58(5), 2119-2134. https://doi.org/10.1007/s00158-018-2027-y.
- Gutierrez Soto, M. and Adeli, H. (2017), "Many-objective control optimization of high-rise building structures using replicator dynamics and neural dynamics model", Struct. Multidiscip. Optim., 56(6), 1521-1537. https://doi.org/10.1007/s00158-017-1835-9.
- Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006.
- Kazemi-Moghaddam, A. and Sasani, M. (2015), "Progressive collapse evaluation of Murrah federal building following sudden loss of column G20", Eng. Struct., 89, 162-171. https://doi.org/10.1016/j.engstruct.2015.02.003.
- Kiakojouri, F., De Biagi, V., Chiaia, B. and Sheidaii, M.R. (2020), "Progressive collapse of framed building structures: Current knowledge and future prospects", Eng. Struct., 206(11), 110061. https://doi.org/10.1016/j.engstruct.2019.110061.
- Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983), "Optimization by Simulated Annealing", Science (80-. )., 220(4598), 671 LP - 680. https://doi.org/10.1126/science.220.4598.671.
- Liu, M. (2011), "Progressive collapse design of seismic steel frames using structural optimization", J. Constr. Steel Res., 67(3), 322-332. https://doi.org/10.1016/j.jcsr.2010.10.009.
- Mirkarimi, S.P., Mohammadi Dehcheshmeh, E. and Broujerdian, V. (2022), "Investigating the progressive collapse of steel frames considering vehicle impact dynamics", Iran. J. Sci. Technol. - Trans. Civ. Eng., 46(6), 4463-4479. https://doi.org/10.1007/s40996-022-00927-5.
- Mociran, H.A. and Popa, A.G. (2016), "Influence of 2D versus 3D modeling on the seismic performance of dual eccentrically braced steel frames", In Insifhts and Innovations in Structural Engineering, Mechanics and Computation, 338-341.
- Rezvani, F.H. and Asgarian, B. (2014), "Effect of seismic design level on safety against progressive collapse of concentrically braced frames", Steel Compos. Struct., 16(2), 135-156. https://doi.org/10.12989/scs.2014.16.2.135.
- Safari Honar, F., Broujerdian, V., Mohammadi Dehcheshmeh, E. and Bedon, C. (2023), "Nonlinear dynamic assessment of a steel frame structure subjected to truck collision", Buildings, 13(6). https://doi.org/10.3390/buildings13061545.
- Seismic Evaluation and Retrofit of Existing Buildings (2017).
- Siadati, S.R., Broujerdian, V. and Dehcheshmeh, E.M. (2022), "Evaluation of intermediate reinforced concrete moment frame subjected to truck collision", J. Rehabil. Civ. Eng., 10(3), 64-80. https://doi.org/10.22075/JRCE.2021.22745.1491.
- Specification for Structural Steel Buildings (2010).
- Starossek, U. (2007), "Typology of progressive collapse", Eng. Struct., 29(9), 2302-2307. https://doi.org/10.1016/j.engstruct.2006.11.025.
- Tayfur, B., Yilmaz, H. and Daloglu, A.T. (2020), "Hybrid tabu search algorithm for weight optimization of planar steel frames", Eng. Optim., 1-15. https://doi.org/10.1080/0305215X.2020.1793977.