DOI QR코드

DOI QR Code

Seismic performance evaluation of an external steel frame retrofit system

  • Michael Adane (Department of Global Smart City, Sungkyunkwan University) ;
  • Hyungoo Kang (Decomissioning Waste R&D Team, Korea Radioactive Waste Agency (KORAD)) ;
  • Seungho Chun (Department of Global Smart City, Sungkyunkwan University) ;
  • Jinkoo Kim (Department of Global Smart City, Sungkyunkwan University)
  • Received : 2023.06.05
  • Accepted : 2024.01.22
  • Published : 2024.03.10

Abstract

In this study a steel moment frame system to be installed on the exterior surface of an existing structure is proposed as a seismic retrofit device. The seismic performance of the retrofit system was investigated by installing it on the exterior of a single story single bay reinforced concrete frame and testing it under cyclic loading. The cyclic loading test results indicated that the steel frame significantly enhanced the strength and ductility of the bare structure. Finite element analysis was carried out to validate the test results, and it was observed that there was good agreement between the two results. An analytical model was developed in order to apply the retrofit system to an example structure subjected to seven mainshock-aftershock sequential earthquake records. It was observed that the model structure was severely damaged due to the mainshock earthquakes, and the seismic response of the model structure increased significantly due to the subsequent aftershock earthquakes. The seismic retrofit of the model structure using the proposed steel frame turned out to be effective in decreasing the seismic response below the given limit state.

Keywords

Acknowledgement

This research was supported by a grant(2021-MOIS35-003) of 'Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation' funded by Ministry of Interior and Safety (MOIS, Korea).

References

  1. Amiri, G.G. and Rajabi, E. (2018), "Effects of consecutive earthquakes on increased damage and response of reinforced concrete structures", Comput. Concrete, 21(1), 55-66. https://doi.org/10.1016/j.engstruct.2017.11.071.
  2. Ancheta, T.D., Darragh, R.B., Stewart, J.P., Seyhan, E., Silva, W. J., Chiou, B.S.J., Wooddell, K.E., Graves, R.W., Kottke, A.R. and Boore, D.M. (2014), "NGA-West2 database", Earthq. Spectra, 30(3), 989-1005. https://doi.org/10.1193/070913EQS197M.
  3. Arias, A. (1970), Measure of Earthquake Intensity. Massachusetts Inst. of Tech., Cambridge. Univ. of Chile, Santiago de Chile. 
  4. ASCE 7 (2016), Minimum Design Loads and Associated Criteria for Buildings and Other Structures. https://doi.org/10.1061/9780784414248
  5. Dereje, A.J. and Kim, J. (2022), "Optimal seismic retrofit design method for asymmetric soft first-story structures", Struct. Eng. Mech., 81(6), 677-689. https://doi.org/10.12989/sem.2022.81.6.677.
  6. DesRoches, R., Comerio, M., Eberhard, M., Mooney, W. and Rix, G.J. (2011), "Overview of the 2010 Haiti earthquake", Earthq. Spectra, 27(1_suppl1), 1-21. https://doi.org/10.1193/1.3630129.
  7. Eads, L., Miranda, E., Krawinkler, H. and Lignos, D.G. (2013), "An efficient method for estimating the collapse risk of structures in seismic regions", Earthq. Eng. Struct. Dyn., 42(1), 25-41. https://doi.org/10.1002/eqe.2191.
  8. Eldin, M.N., Dereje, A.J. and Kim, J. (2020), "Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers", Eng. Struct., 208, 109925. https://doi.org/10.1016/j.engstruct.2019.109925.
  9. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct, 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  10. Gholami, M., Zare, E., Gorji Azandariani, M. and Moradifard, R. (2021), "Seismic behavior of dual buckling-restrained steel braced frame with eccentric configuration and post-tensioned frame system", Soil Dyn. Earthq. Eng., 151(September), 106977. https://doi.org/10.1016/j.soildyn.2021.106977
  11. Goda, K., Pomonis, A., Chian, S.C., Offord, M., Saito, K., Sammonds, P., Fraser, S., Raby, A. and Macabuag, J. (2013), "Ground motion characteristics and shaking damage of the 11th March 2011 M w9. 0 Great East Japan earthquake", Bull. Earthq. Eng., 11(1), 141-170. https://doi.org/10.1007/s10518-012-9371-x.
  12. Gorji Azandariani, M., Gholhaki, M. and Kafi, M.A. (2021a), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Structures, 29(October 2020), 30-47. https://doi.org/10.1016/j.istruc.2020.11.009.
  13. Gorji Azandariani, M., Kafi, M.A. and Gholhaki, M. (2021b), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. https://doi.org/10.1016/j.jobe.2021.102844.
  14. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145.
  15. Guo, J.W.W. and Christopoulos, C. (2016), "Response prediction, experimental characterization and P-spectra design of frames with viscoelastic-plastic dampers", Earthq. Eng. Struct. Dyn., 45(11), 1855-1874. https://doi.org/10.1002/eqe.2732.
  16. Javidan, M.M. and Kim, J. (2020), "Experimental and numerical sensitivity assessment of viscoelasticity for polymer composite materials", Sci. Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-57552-3.
  17. Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. https://doi.org/10.12989/scs.2021.39.5.645.
  18. Kang, H., Adane, M., Chun, S. and Kim, J. (2021), "Development of seismic retrofit system made of steel frame with vertical slits", Steel Compos. Struct., 44(2), 269-280 https://doi.org/10.12989/scs.2022.44.2.269.
  19. Lee, J. and Kim, J. (2017), "Development of box-shaped steel slit dampers for seismic retrofit of building structures", Eng. Struct., 150, 934-946. https://doi.org/10.1016/j.engstruct.2017.07.082.
  20. Liberatore, L., Sorrentino, L., Liberatore, D. and Decanini, L.D. (2013), "Failure of industrial structures induced by the Emilia (Italy) 2012 earthquakes", Eng. Fail. Anal., 34, 629-647. https://doi.org/10.1016/j.engfailanal.2013.02.009.
  21. Lignos, D. (2008). Sidesway Collapse of Deteriorating Structural Systems Under Seismic Excitations. Stanford university.
  22. Maheri, M.R. and Sahebi, A. (1997), "Use of steel bracing in reinforced concrete frames", Eng. Struct., 19(12), 1018-1024. https://doi.org/10.1016/S0141-0296(97)00041-2.
  23. Maheri, M.R. and Yazdani, S. (2016a), "Design of steel brace connection to an RC frame using Uniform Force Method", J. Construct. Steel Res., 116, 131-140. https://doi.org/10.1016/j.jcsr.2015.09.010.
  24. Maheri, M.R. and Yazdani, S. (2016b), "Seismic performance of different types of connections between steel bracing and RC frames", Iran. J. Sci. Technol., Transact. Civil Eng., 40(4), 287-296. https://doi.org/10.1007/s40996-016-0034-z.
  25. Marshall, J.D. and Charney, F.A. (2012), "Seismic response of steel frame structures with hybrid passive control systems", Earthq. Eng. Struct. Dyn., 41(4), 715-733. https://doi.org/10.1002/eqe.1153.
  26. McKenna, F. F., & Manual, G. L. O. (2001). Pacific Earthquake Engineering Research (PEER) Center.
  27. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36, 163-177. https://doi.org/10.12989/scs.2020.36.2.163.
  28. Moss, R.E.S., Thompson, E.M., Kieffer, D.S., Tiwari, B., Hashash, Y.M.A., Acharya, I., Adhikari, B.R., Asimaki, D., Clahan, K.B. and Collins, B.D. (2015), "Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks", Seismol. Res. Lett., 86(6), 1514-1523. https://doi.org/10.1785/0220150158.
  29. Naeem, A., Eldin, M.N., Kim, J. and Kim, J. (2017), "Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4.
  30. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct, 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  31. Noureldin, M., Adane, M. and Kim, J. (2021), "Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events", Earthq. Struct., 21(3), 219-230. https://doi.org/10.12989/eas.2021.21.3.219.
  32. NourEldin, M., Naeem, A. and Kim, J. (2019), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16. https://doi.org/10.1177/1369433218773487.
  33. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
  34. Rathje, E.M., Abrahamson, N.A. and Bray, J.D. (1998), "Simplified frequency content estimates of earthquake ground motions", J. Geotech. Geoenviron. Eng., 124(2), 150-159.
  35. Rousta, A.M., Shojaeifar, H., Azandariani, M.G., Saberiun, S. and Abdolmaleki, H. (2021), "Cyclic behavior of an energy dissipation semi-rigid moment steel frames (SMRF) system with LYP steel curved dampers", Struct. Eng. Mech., 80(2), 129-142. https://doi.org/10.12989/sem.2021.80.2.129.
  36. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565-579. https://doi.org/10.12989/SCS.2022.43.5.565.
  37. Shahri, S.F. and Mousavi, S.R. (2018), "Seismic behavior of beam-to-column connections with elliptic slit dampers", Steel Compos. Struct, 26(3), 289-301. http://dx.doi.org/10.12989/scs.2018.26.3.289.
  38. Shcherbakov, R., Nguyen, M. and Quigley, M. (2012), "Statistical analysis of the 2010 Mw 7.1 Darfield earthquake aftershock sequence", New Zealand J. Geology Geophys., 55(3), 305-311. https://doi.org/10.1080/00288306.2012.676556.
  39. Shokrabadi, M. and Burton, H.V. (2018a), "Building service life economic loss assessment under sequential seismic events", Earthq. Eng. Struct. Dyn., 47(9), 1864-1881. https://doi.org/10.1002/eqe.3045.
  40. Shokrabadi, M. and Burton, H.V. (2018b), "Risk-based assessment of aftershock and mainshock-aftershock seismic performance of reinforced concrete frames", Struct. Safety, 73, 64-74. https://doi.org/10.1016/j.strusafe.2018.03.003.
  41. Silwal, B. and Ozbulut, O.E. (2018), "Aftershock fragility assessment of steel moment frames with self-centering dampers", Eng. Struct., 168, 12-22. https://doi.org/10.1016/j.engstruct.2018.04.071.
  42. Song, R., Li, Y. and Van de Lindt, J.W. (2016), "Loss estimation of steel buildings to earthquake mainshock-aftershock sequences", Struct. Safety, 61, 1-11. https://doi.org/10.1016/j.strusafe.2016.03.002
  43. Sun, C.-G., Cho, H.-I. and Kim, H.-S. (2018), "Engineering seismological characteristics of the 12 September 2016 Gyeongju earthquakes", Earthq. Struct., 15(1) https://doi.org/10.12989/eas.2018.15.1.019.
  44. Uetani, K., Tsuji, M. and Takewaki, I. (2003), "Application of an optimum design method to practical building frames with viscous dampers and hysteretic dampers", Eng. Struct., 25(5), 579-592. https://doi.org/10.1016/S0141-0296(02)00168-2.
  45. Xu, Z.-D. (2009), "Horizontal shaking table tests on structures using innovative earthquake mitigation devices", J. Sound Vib., 325(1-2), 34-48. https://doi.org/10.1016/j.jsv.2009.03.019.
  46. Xu, Z.-D., Huang, X.-H. and Lu, L.-H. (2012), "Experimental study on horizontal performance of multi-dimensional earthquake isolation and mitigation devices for long-span reticulated structures", J. Vib. Control, 18(7), 941-952. https://doi.org/10.1177/1077546311418868.
  47. Xu, Z-D., Suo, S. and Lu, Y. (2016), "Vibration control of platform structures with magnetorheological elastomer isolators based on an improved SAVS law", Smart Mater. Struct., 25(6), 065002. https://doi.org/10.1088/0964-1726/25/6/065002.
  48. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P., Hashemi, A. and Quenneville, P. (2020), "Experimental study on cyclic prformance of a damage-free brace with self-centering Connection", J. Struct. Eng., 147(1), 04020299. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002869.
  49. Zhang, C., Zhou, Y., Weng, D.G., Lu, D.H. and Wu, C.X. (2015), "A methodology for design of metallic dampers in retrofit of earthquake-damaged frame", Struct. Eng. Mech, 56(4), 569-588. http://dx.doi.org/10.12989/sem.2015.56.4.569.