Acknowledgement
The CNPq and CAPES are acknowledged for funding the first author's PhD scholarship.
References
- AASHTO (2002), Provisional Standards. American Association of State Highway and Transportation Officials; Washington, D.C. United States.
- AASHTO (2007), AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials; Washington, D.C. United States.
- ACI 209 (1992), Prediction of creep, shrinkage, and temperature effects in concrete structures, American Concrete Institute; Farmington Hills, MI, USA.
- Butler, L.J., Lin, W., Xu, J., Gibbons, N., Elshafie, M.Z.E.B. and Middleton, C.R. (2018), "Monitoring, modeling, and assessment of a self-sensing railway bridge during construction", J Bridge Eng, 23, 04018076. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001288.
- Cao, R., El-Tawil, S. and Agrawal, A.K. (2020), "Miami pedestrian bridge collapse: Computational Forensic analysis", J. Bridge Eng., 25, 04019134. https://doi.org/10.1061/(ASCE)BE.1943-5592.00015.
- Debaiky, A.S. (1997), "Analysis of time-dependent effects on segmental prestressed concrete curved box-girder bridges", Master Dissertation, Concordia University, Montreal.
- Erhan, S. and Dicleli, M. (2015), "Comparative assessment of the seismic performance of integral and conventional bridges with respect to the differences at the abutments", Bull. Earthq. Eng., 13(2), 653-677. https://doi.org/10.1007/s10518-014-9635-8.
- Farre-checa, J., Komarizadehasl, S., Ma, H., Lozano-Galant, J.A. and Turmo, J. (2022), "Direct simulation of the tensioning process of cable-stayed bridge cantilever construction", Autom Constr, 137(5), 104197. https://doi.org/10.1016/j.autcon.2022.104197.
- Han, C., Zhang, J., Zhou, D., Lan, S. and Wang, P. (2020), "Computing creep secondary internal forces in a continuous steel-concrete composite beam constructed through segmented pouring", J Struct Eng, 146, 1-13. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002494.
- He, J., Li, X., Li, C., Correia, J.A.F.O., Xin, H. and Zhou, M. (2020), "A novel asynchronous-pouring-construction technology for prestressed concrete box girder bridges with corrugated steel webs", Struct, 27, 1940-1950. https://doi.org/10.1016/j.istruc.2020.07.077.
- Huang, E., Ke, H. and Hu, H. (2023), "Optimization of construction process and determination of intermediate cable forces for composite beam cable-stayed bridge", Appl Sci, 13, 5738. https://doi.org/10.3390/app13095738.
- Manso, A.N., Martinez, M.A., Diaz, J.J.C., Fresno, D.C. and Rabanal, F.A. (2015), "A new steel bridge launching system and method. Fundamentals", Hormig Acero, 66, 151-163. http://dx.doi.org/10.1016/j.hya.2015.09.001.
- Mari, A., Mirambell, E. and Estrada, I. (2003), "Effects of construction process and slab prestressing on the serviceability behaviour of composite bridges", J. Constr. Steel Res., 59, 135-163. https://doi.org/10.1016/S0143-974X(02)00029-9.
- Mari, A.R. (2000), "Numerical simulation of the segmental construction of three-dimensional concrete frames", Eng Struct, 22, 585-596. https://doi.org/10.1016/S0141-0296(99)00009-7.
- Miranda, M.P., Tamayo, J.P. and Morsch, I.B. (2022a), "Reassessment of viscoelastic response in steel-concrete composite beams", Struc Eng Mech, 81, 617-631. https://doi.org/10.12989/sem.2022.81.5.617.
- Miranda, M.P., Tamayo, J.P. and Morsch, I.B. (2022b), "Benchmark examples for structural system changes: analytical and numerical approaches", Arch Comput. Meth. Eng., 29, 3609-3637. https://doi.org/10.1007/s11831-022-09709-8.
- Ozcelik, M. and Tutus, O. (2020), "An investigation on Botan Bridge (Siirt - Turkey) collapse during construction", Struct, 25, 268-273. https://doi.org/10.1016/j.istruc.2020.03.017.
- Reginato, L., Tamayo, J. and Morsch, I. (2018), "Finite element study of effective width in steel-concrete composite beams under long-term service loads", Lat Am J. Solids Struct., 15, 1-25. https://doi.org/10.1590/1679-78254599.
- Shushkewich, K.W. (1986), "Time-dependent analysis of segmental bridges", Comput Struct, 23, 95-118. https://doi.org/10.1016/0045-7949(86)90111-2.
- Su, D., Nassif, H. and Xia, Y. (2018), "Optimization of deck construction staging for multiple-span continuous steel girder bridge", J Perform Constr Facil, 32, 1-11. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001073.
- Su, X. and Zhou, M. (2023), "Shear force transfer efficiency of tapered bridges with trapezoidal corrugated steel webs", J. Construct. Steel Res., 211, 108135. https://doi.org/10.1016/j.jcsr.2023.108135.
- Tamayo, J.L.P., Morsch, I.B. and Awruch, A.M. (2013), "Static and dynamic analysis of reinforced concrete shells", Lat. Am. J. Solids Struct, 10, 1109-1134. https://doi.org/10.1590/S1679-78252013000600003.
- Tamayo, J.L.P., Morsch, I.B. and Awruch, A.M. (2015), "Shorttime numerical analysis of steel-concrete composite beams", J. Brazil Soc. Mech. Sci. Eng., 37, 1097-1109. https://doi.org/10.1007/s40430-014-0237-9.
- Tamayo, J.P., Franco, M.I., Morsch, I.B., Desir, J.M. and Wayar, A.M.M. (2019), "Some aspects of numerical modeling of steel-concrete composite beams with prestressed tendons", Lat. Am. J. Solids Struct, 16, e219. https://doi.org/10.1590/1679-78255599.
- Vokunnaya, S.S. and Tanaji, T. (2017), "Construction stage analysis of segmental cantilever bridge", Int. J. Civil Eng. Technol., (IJCIET), 8(2), 373-382.
- Wang, G.M., Zhu, L., Zhou, G.P., Han, B. and Ji, W.Y. (2020a), "Experimental research of the time-dependent effects of steel- concrete composite girder bridges during construction and operation periods", Mater, 13, 1-18. https://doi.org/10.3390/ma13092123.
- Wang, X., Wang, H., Sun, Y., Mao, X. and Tang, S. (2020b), "Process-independent construction stage analysis of selfanchored suspension bridges", Autom Constr, 117, 103-127. https://doi.org/10.1016/j.autcon.2020.103227.
- Zhu, L., Wang, Y., Zhou, G. and Han, B. (2022), "Structural health monitoring continuous bridge during construction and vehicle load tests", Mech Adv Mater Struct, 29, 1370-1385. https://doi.org/10.1080/15376494.2020.1820117.