Acknowledgement
This research was supported by the College of Graduate Studies and the SCMASS Research Group at the University of Sharjah. The authors are grateful for this support.
References
- Akgoz, B. and mer Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Allouzi, R. (2019), "Behavior of slender RC columns with inclination", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 172(10), 739-748. https://doi.org/10.1680/jstbu.18.00011.
- Allouzi, R., Abu-Shamah, A. and Alkloub, A. (2022), "Capacity prediction of straight and inclined slender concrete-filled double-skin tubular columns", Multidiscipl. Modeling Mater. Struct., 18(4), 688-707. https://doi.org/10.1108/MMMS-05-2022-0079.
- ANSI/AISC 360-22 (2022), Specification for Structural Steel Buildings.
- Avcar, M. (2014), "Elastic buckling of steel columns under axial compression", Amer. J. Civil Eng., 2(3), 102. https://doi.org/10.11648/j.ajce.20140203.17.
- British Standard (1993), Eurocode 3-Design of steel structures-BS EN, 1(1).
- BS EN ISO 6892-1:2016 (2016), Metallic Materials-Tensile Testing Part 1: Method of Test at Ambient Temperaturee., European Committee for Standardization.
- E8/E8M-16a (2011), Test Methods for Tension Testing of Metallic Materials. ASTM International. https://doi.org/10.1520/E0008_E0008M-16A.
- Elishakoff, I. (2001), "Inverse buckling problem for inhomogeneous columns", Int. J. Solids Struct.
- Elishakoff, I. and Rollot, O. (1999), "New closed-form solutions for buckling of a variable stiffness column by mathematica®", J. Sound Vib., 224(1), 172-182. https://doi.org/10.1006/jsvi.1998.2143.
- Hassan, F.F. and Al Zaidee, S.R. (2020), "Deformation and strength of inclined RC isolated columns using experimental and three-dimensional finite element analyses", In IOP Conference Series: Materials Science and Engineering, 745(1), 012129. https://doi.org/10.1088/1757-899X/745/1/012129.
- Huang, Y. and Li, X.-F. (2011), "Buckling analysis of nonuniform and axially graded columns with varying flexural rigidity", J. Eng. Mech., 137(1), 73-81. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206.
- Javidan, F., Heidarpour, A., Zhao, X.-L. and Minkkinen, J. (2015), "Performance of innovative fabricated long hollow columns under axial compression", J. Construct. Steel Res., 106, 99-109. https://doi.org/10.1016/j.jcsr.2014.12.013.
- Kamarudin, M.K., Yusoff, M.M., Disney, P. and Parke, G.A.R. (2018), "Experimental and numerical investigation of the buckling performance of tubular glass columns under compression", Structures, 15, 355-369. https://doi.org/10.1016/j.istruc.2018.08.002.
- Kilic, M. and Cinar, M. (2021), "Buckling behavior of sulfatecorroded thin-walled cylindrical steel shells reinforced with CFRP", Iran. J. Sci. Technol., Transact. Civil Eng., 45, 2267-2282. https://doi.org/10.1007/s40996-020-00494-7
- Lam, D., Dai, X.H., Han, L.H., Ren, Q.X. and Li, W. (2012), "Behavior of inclined, tapered, and STS square CFST stub columns subjected to axial load", Thin-Wall. Struct., 54, 94-105. https://doi.org/10.1016/j.tws.2012.02.010.
- Li, Q.S. (2001), "Exact solutions for buckling of nonuniform columns under axial concentrated and distributed loading", Europ. J. Mech. A/Solids, 20(3), 485-500. https://doi.org/10.1016/S0997-7538(01)01143-3.
- Marques, L., Da Silva, L.S. and Rebelo, C. (2014), "Rayleigh-Ritz procedure for determination of the critical load of tapered columns", Steel Compos. Struct., 16(1), 45-58. https://doi.org/10.12989/scs.2014.16.1.045
- Oikonomopoulou, F., Van Den Broek, E.A.M., Bristogianni, T., Veer, F.A. and Nijsse, R. (2017), "Design and experimental testing of the bundled glass column", Glass Struct. Eng., 2(2), 183-200. https://doi.org/10.1007/s40940-017-0041-x.
- Taraghi, P., Zirakian, T. and Karampour, H. (2021), "Parametric study on buckling stability of CFRP-strengthened cylindrical shells subjected to uniform external pressure", Thin-Wall. Struct., 161, 107411. https://doi.org/10.1016/j.tws.2020.107411.