DOI QR코드

DOI QR Code

Adsorption of phosphate and mitigation of biofouling using lanthanum-doped quorum quenching beads in MBR

  • Hyeonwoo Choi (Department of Environmental Engineering, University of Seoul) ;
  • Youjung Jang (Department of Environmental Engineering, University of Seoul) ;
  • Jaeyoung Choi (Department of Environmental Engineering, University of Seoul) ;
  • Hyeonsoo Choi (Department of Environmental Engineering, University of Seoul) ;
  • Heekyong Oh (Department of Environmental Engineering, University of Seoul) ;
  • Shinho Chung (Department of Environmental Science, Forman Christian College (A Chartered University))
  • 투고 : 2024.01.23
  • 심사 : 2024.04.20
  • 발행 : 2024.04.25

초록

The removal of phosphorus, especially phosphate-form phosphorus, is necessary in wastewater treatment. Biofouling induced by the quorum sensing mechanism is also a major problem in membrane bioreactor (MBR), which reduces membrane flux. This study introduces lanthanum-doped quorum quenching (QQ) beads into MBR, confirming their inhibitory effect on biofouling due to Rhodococcus sp. BH4 and their capacity for phosphorus removal through lanthanum adsorption. A batch test was conducted to access the phosphate adsorption of lanthanum-QQ (La-QQ) beads and lab-scale MBR to verify the effect of inhibition. The study aimed to identify distinctions among the MBR, QQ MBR, and La-QQ MBR. In the batch test, the phosphate removal rate increased as the volume of beads increased, while the unit volume removal rate of phosphate decreased. In the lab-scale MBR, the phosphate removal rates were below 20% in the control MBR and QQ MBR, whereas the La-QQ MBR achieved a phosphate removal rate of 74%. There was not much difference between the ammonia and total organic carbon (TOC) removal rates. Regarding the change in transmembrane pressure(TMP), 3.7 days were taken for the control MBR to reach critical pressure. In contrast, the QQ-MBR took 9.8 days, and the La-QQ MBR took 6.1 days, which confirms the delay in biofouling. It is expected that La-QQ can be used within MBR to design a more stable MBR process that regulates biofouling and enhances phosphate removal.

키워드

과제정보

This work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023).

참고문헌

  1. Ahmed, S., Chung, S., Sohail, N., Qazi, I.A. and Justin, A. (2020), "Application of cell entrapping beads for quorum quenching technique in submerged membrane bioreactor", Water Sci. Technol., 81(4), 744-752. https://doi.org/10.2166/wst.2020.149
  2. Al-Asheh, S., Bagheri, M. and Aidan, A. (2021), "Membrane bioreactor for wastewater treatment: A review", Case Stud. Chem. Environ., 4, 100109. https://doi.org/10.1016/j.cscee.2021.100109
  3. Ayarza, J., Coello, Y. and Nakamatsu, J. (2016), "SEM-EDS study of ionically cross-linked alginate and alginic acid bead formation", Int. J. Polym., 22(1), 1-10. https://doi.org/10.1080/1023666X.2016.1219834
  4. Bashar, R., Gungor, K., Karthikeyan, K.G. and Barak, P. (2018), "Cost effectiveness of phosphorus removal processes in municipal wastewater treatment", Chemosphere, 197, 280-290. https://doi.org/10.1016/j.chemosphere.2017.12.169
  5. Bin, Z., Baosheng, S., Min, J., Taishi, G. and Zhenghong, G. (2008), "Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR", Desalination, 227, 286-294. https://doi.org/10.1016/j.desal.2007.06.032
  6. Chu, Y.B., Li, M., Liu, J.W., Xu, W., Cheng, S.H. and Zhao, H.Z. (2018), "Molecular insights into the mechanism and the efficiency-structure relationship of phosphorus removal by coagulation", Water Res., 147, 195-203. https://doi.org/10.1016/j.watres.2018.10.006
  7. Hasbullah, N.A., Ahmed, O.H. and Ab Majid, N.M. (2020), "Effects of amending phosphatic fertilizers with clinoptilolite zeolite on phosphorus availability and its fractionation in an acid soil", Appl. Sci., 10(9), 3162, https://doi.org/10.3390/app10093162
  8. Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., Hu, Y., Tang, B. and Zhou, J. (2016), "Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview", Chemosphere, 157, 137-151. https://doi.org/10.1016/j.chemosphere.2016.05.032
  9. Islam, Z.U., Rose, J., Ahmed, S. and Chung, S. (2020), "Quorum quenching cell entrapping bead by polyvinyl alcohol method for biofouling mitigation in lab-scale MBR", NUST J. Nat. Sci., 13(1), 28-36. https://doi.org/10.24949/njes.v13i1.601
  10. Islam, Z.U., Ayub, M., Chung, S. and Oh, H. (2022), "Effect of aeration intensity on performance of lab-Scale quorum-quenching membrane bioreactor", Membranes, 12(3), 289. https://doi.org/10.3390/membranes12030289
  11. Jiang, W., Xia, S., Liang, J., Zhang, Z. and Hermanowicz, S.W. (2013), "Effect of quorum quenching on the reactor performance, biofouling and biomass characteristics in membrane bioreactors", Water Res., 47(1), 187-196. https://doi.org/10.1016/j.watres.2012.09.050
  12. Kim, H.S., Kim, Y., Lim, H.S., Kim, H. and Lee, J.W. (2023), "Surface enrichment of lanthanum on Co3O4 for stable chemical looping combustion", J. CO2 Util., 73, 102532. https://doi.org/10.1016/j.jcou.2023.102532
  13. Kim, S.R., Oh, H.S., Jo, S.J., Yeon, K.M., Lee, C.H., Lim, D.J., Lee, C.H. and Lee. J.K. (2013), "Biofouling control with beadentrapped quorum quenching bacteria in membrane bioreactors: physical and biological effects", Environ. Sci. Technol., 47(2), 836-842. https://doi.org/10.1021/es303995s
  14. Koh, K.Y., Chen, Z., Zhang, S. and Chen, J.P. (2022), "Cost-effective phosphorus removal from aqueous solution by a chitosan/lanthanum hydrogel bead: Material development, characterization of uptake process and investigation of mechanisms", Chemosphere, 286(1), 131458. https://doi.org/10.1016/j.chemosphere.2021.131458
  15. Lee, K., Yu, H., Zhang, X. and Choo, K.H. (2018), "Quorum sensing and quenching in membrane bioreactors: Opportunities and challenges for biofouling control", Bioresour. Technol., 270, 656-668. https://doi.org/10.1016/j.biortech.2018.09.019
  16. Lee, S.H., Lee, S., Lee, K., Nahm, C.H., Kwon, H., Oh, H.S., Won, Y.J., Choo, K.H., Lee, C.H. and Park, P.K. (2016), "More efficient media design for enhanced biofouling control in a membrane bioreactor: Quorum quenching bacteria entrapping hollow cylinder", Environ. Sci. Technol., 50(16), 8596-8604. https://doi.org/10.1021/acs.est.6b01221
  17. Lee S.K., Park, S.K., Kwon, H.P., Lee, S.H., Lee, K.B., Nahm, C.H., Jo, S.J., Oh, H.S., Park, P.K., Choo, K.H., Lee, C.H. and Yi, T. (2016), "Crossing the border between laboratory and field: Bacterial quorum quenching for anti-biofouling strategy in an MBR", Environ. Sci. Technol., 50(4), 1788-1795. https://doi.org/10.1021/acs.est.5b04795
  18. Li, S., Huang, J., Yi, K., Pang, H., Liu, Z., Zhang, W., Zhang, C., Liu, S., Li, J., Liu, C. and Shu, W. (2023), "Silica reinforced core-shell quorum quenching beads to control biofouling in an MBR", Chem. Eng. J., 460, 141725. https://doi.org/10.1016/j.cej.2023.141725
  19. Liu, Q., Ren, J., Lu, Y., Zhang, X., Roddick, F.A., Fan, L., Wang, Y., Yu, H. and Yao, P. (2021), "A review of the current in-situ fouling control strategies in MBR: Biological versus physicochemical", J. Ind. Eng. Chem., 98, 42-59. https://doi.org/10.1016/j.jiec.2021.03.042
  20. Lu, Y.Y., Wang, H., Chang, R.R., Li, W.B., Huang, B.C. and Jin R.C. (2024), "A literature review on phosphate removal from wastewater by lanthanum-based adsorbents: From mechanisms to applications", J. Water Proc. Eng., 61, 105282. https://doi.org/10.1016/j.jwpe.2024.105282
  21. Nahm, C.H., Choi, D.C., Kwon, H., Lee, S., Lee, S.H., Lee, K., Choo, K.H., Lee, J.K., Lee, C.H. and Park, P.K. (2017), "Application of quorum quenching bacteria entrapping sheets to enhance biofouling control in a membrane bioreactor with a hollow fiber module", J. Membr. Sci., 526, 264-271. https://doi.org/10.1016/j.memsci.2016.12.046
  22. Nam, A., Kweon, J., Ryu, J., Lade, H. and Lee, C. (2015), "Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment", Membr. Water Treat., 6(3), 189-203. https://doi.org/10.12989/mwt.2015.6.3.189
  23. Oh, H.S., Kim, S.R., Cheong, W.S., Lee, C.H. and Lee, J.K. (2013), "Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant", Appl. Microbiol. Biotechnol., 97, 10223-10231. https://doi.org/10.1007/s00253-013-4933-7
  24. Pang, L., Yang, P., Zhao J. and Zhang, H. (2016), "Comparison of wastewater treatment processes on the removal efficiency of organophosphate esters", Environ. Sci. Technol., 74(7), 1602-1609. https://doi.org/10.2166/wst.2016.356
  25. Perveen, S. (2018), "Detection of quorum quenching enzymes producing genes in membrane bioreactor", Ph.D. Dissertation; National University of Sciences & Technology, Islamabad Capital Territory, Pakistan.
  26. Pervez, S., Khan, S.J., Waheed, H., Hashmi, I. and Lee, C.H. (2018), "Impact of quorum quenching bacteria on biofouling retardation in submerged membrane bioreactor (SMBR)", Membr. Water Treat., 9(4), 279-284. https://doi.org/10.12989/mwt.2018.9.4.279
  27. Song, W., Kim, C., Han, J., Lee, J., Jiang, Z. and Kweon, J. (2023), "Application of acyl-homoserine lactones for regulating biofilm characteristics on PAO1 and multi-strains in membrane bioreactor", Membr. Water Treat., 14(1), 35-45. https://doi.org/10.12989/mwt.2023.14.1.035
  28. Suresh, D., Goh, P.S., Ismail, A.F. and Wong, T.W. (2023), "Insights into biofouling in reverse osmosis membrane: A comprehensive review on techniques for biofouling assay", J. Environ. Chem. Eng., 11(3), 110317. https://doi.org/10.1016/j.jece.2023.110317
  29. Taskan, B. and Taskan, E. (2021), "Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4", Chemosphere, 285, 131538. https://doi.org/10.1016/j.chemosphere.2021.131538
  30. Wang, H., Yu, L.Q., Chen, S.N., Liu, M., Fan, N.S., Huang, B.C. and Jin, R.C. (2022), "Coagulation enhanced high-rate contact-stabilization process for pretreatment of municipal wastewater: Simultaneous organic capture and phosphorus removal", Sep. Purif. Technol., 298, 121669. https://doi.org/10.1016/j.seppur.2022.121669
  31. Wang, X., Xu, H., Jiao, R., Ma, G. and Wang, D. (2021), "Coagulation removal of phosphorus from a southern China reservoir in different stages of algal blooms: Performance evaluation and Al-P matching principle analysis", Sci. Total Environ., 782, 146849, https://doi.org/10.1016/j.scitotenv.2021.146849
  32. Weerasekara, N.A., Choo, K.H. and Lee, C.H. (2016), "Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors", Water Res., 103, 293-301. https://doi.org/10.1016/j.watres.2016.07.049
  33. Zhang, Y., Qiu, X., Luo, J., Li, H., How, S.W., Wu, D., He, J., Cheng, Z., Gao, Y. and Lu, H. (2024), "A review of the phosphorus removal of polyphosphate-accumulating organisms in natural and engineered systems", Sci. Total Environ., 912, 169103. https://doi.org/10.1016/j.scitotenv.2023.169103
  34. Zeng, L., Li, X. and Liu, J. (2004), "Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings", Water Res., 38(5), 1318-1326. https://doi.org/10.1016/j.watres.2003.12.009
  35. Zong, Y., Li, Y., Jin, X., Shang, Y., Jin, P. and Wang, X.C. (2022), "Enhanced phosphate removal by coral reef-like flocs: Coagulation performance and mechanisms", Sep. Purif. Technol., 299, 121690. https://doi.org/10.1016/j.seppur.2022.121690