DOI QR코드

DOI QR Code

Application of nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) for the removal of Co2+, Sr2+ and Cs+ from radioactive wastewater

  • Md Abdullah Al Masud (School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University) ;
  • Won Sik Shin (School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University)
  • Received : 2023.08.11
  • Accepted : 2024.06.24
  • Published : 2024.04.25

Abstract

In this study, a nickel hexacyanoferrate and manganese dioxide-polyacrylonitrile (NM-PAN) composite was synthesized and used for the sorptive removal of Co2+, Sr2+, and Cs+ Cs+ in radioactive laundry wastewater. Single- and multi-solute competitive sorptions onto NM-PAN were investigated. The Freundlich (Fr), Langmuir (Lang), Kargi-Ozmıhci (K-O), Koble-Corrigan (K-C), and Langmuir-Freundlich (Lang-Fr) models satisfactorily predicted all the single sorption data. The sorption isotherms were nonlinearly favorable (Freundlich coefficient, NF = 0.385-0.426). Cs+ has the highest maximum sorption capacity (qmL = 0.855 mmol g-1) for NM-PAN compared to Co2+ and Sr2+, wherein the primary mechanism was the physical process (mainly ion-exchange). The competition between the metal ions in the binary and ternary systems reduced the respective sorption capacities. Binary and ternary sorption models, such as the ideal adsorbed solution theory (IAST) model coupled with single sorption models of IAST-Fr, IAST-K-O, IAST-K-C and IAST-Lang-Fr, were fitted to the experimental data; among these, the IAST-Freundlich model showed the most satisfactory prediction for the binary and ternary systems. The presence of cationic surfactants highly affected the sorption on NM-PAN due to the increase in distribution coefficients (Kd) of Co2+ and Cs+.

Keywords

Acknowledgement

This work was supported by Korea Environmental Industry & Technology Institute (KEITI) through Aquatic Ecosystem Conservation Research Program, funded by Korea Ministry of Environment (MOE) (No. 2021003040004).

References

  1. Aksu, Z. and Akpinar, D. (2001), "Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge", Biochem. Eng. J., 7(3), 183-193. https://doi.org/10.1016/S1369-703X(00)00126-1.
  2. Babatunde, A.O., Zhao, Y.Q. (2010), "Equilibrium and kinetic analysis of phosphorus adsorption from aqueous solution using waste alum sludge", J. Hazard. Mater. 184, 746-752. https://doi.org/10.1016/j.jhazmat.2010.08.102.
  3. Ebner, A.D., Ritter, J.A. and Navratil, J.D. (2001), "Adsorption of cesium, strontium, and cobalt ions on magnetite and a magnetite-silica composite", Ind. Eng. Chem. Res., 40(7), 1615-1623. https://doi.org/10.1021/ie000695c.
  4. Eren, E., Afsin, B. and Onal, Y. (2009), "Removal of lead ions by acid activated and manganese oxide-coated bentonite", J. Hazard. Mater., 161(2-3), 677-685. https://doi.org/10.1016/j.jhazmat.2008.04.020.
  5. Gonzalez de Vicente, S.M., Smith, N.A., El-Guebaly, L., Ciattaglia, S., Di Pace, L., Gilbert, M., Mandoki, R., Rosanvallon, S., Someya, Y., Tobita, K., Torcy, D. (2022), "Overview on the management of radioactive waste from fusion facilities: ITER, demonstration machines and power plants", Nucl. Fusion, 62, 085001. https://doi.org/10.1088/1741-4326/ac62f7.
  6. Granados Correa, F. and Jimenez-Becerril, J. (2004), "Adsorption of 60 Co2+ on hydrous manganese oxide powder from aqueous solution", Radiochim. Acta, 92(2), 105-110. https://doi.org/10.1524/ract.92.2.105.27459.
  7. Ismail, I.M., El-Sourougy, M.R., Moneim, N.A. and Aly, H.F. (1999), "Equilibrium and kinetic studies of the sorption of cesium by potassium nickel hexacyanoferrate complex", J. Radioanal. Nucl. Chem., 240, 59-67. https://doi.org/10.1007/BF02349137.
  8. Kadadou, D., Said, E.A., Ajaj, R. and Hasan, S.W. (2023), "Research advances in nuclear wastewater treatment using conventional and hybrid technologies: Towards sustainable wastewater reuse and recovery", J. Water Process Eng., 52, 103604. https://doi.org/10.1016/j.jwpe.2023.103604.
  9. Kargi, F. and Ozmihci, S. (2004), "Biosorption performance of powdered activated sludge for removal of different dyestuffs", Enzyme Microb. Technol., 35(2-3). 267-271. https://doi.org/10.1016/j.enzmictec.2004.05.002.
  10. Le, Q.T.N. and Cho, K. (2021), "Cesium adsorption on a zeolitic imidazolate framework (ZIF-8) functionalized by ferrocyanide", J. Colloid Interface Sci., 581, 741-750. https://doi.org/10.1016/j.jcis.2020.08.017.
  11. Lee, R., Jho, E.H., An, J. (2023). "Sorption of Pb and Cu on different types of microplastics", Membr. Water Treat., 14(1), 19-25. https://doi.org/10.12989/mwt.2023.14.1.019.
  12. Li, Z. and Bowman, R.S. (1997), "Counterion effects on the sorption of cationic surfactant and chromate on natural clinoptilolite", Environ. Sci. Technol., 31(8), 2407-2412. https://doi.org/10.1021/es9610693.
  13. Liu, H., Tong, L., Su, M., Chen, D., Song, G. and Zhou, Y. (2023), "The latest research trends in the removal of cesium from radioactive wastewater: A review based on data-driven and visual analysis", Sci. Total Environ., 869, 161664. https://doi.org/10.1016/j.scitotenv.2023.161664.
  14. Ma, B., Shin, W.S., Oh, S., Park, Y.-J. and Choi, S.-J. (2010), "Adsorptive removal of Co and Sr ions from aqueous solution by synthetic hydroxyapatite nanoparticles", Sep. Sci. Technol., 45(4), 453-462. https://doi.org/10.1080/01496390903484941.
  15. Masud, M.A.A., Annamalai, S. and Shin, W.S. (2023a), "Remediation of ciprofloxacin in soil using peroxymonosulfate activated by ball-milled seaweed kelp biochar: Performance, mechanism, and phytotoxicity", Chem. Eng. J., 465, 142908. https://doi.org/10.1016/j.cej.2023.142908.
  16. Masud, M.A.A., Shin, W.S. and Kim, D.G. (2023b), "Fe-doped kelp biochar-assisted peroxymonosulfate activation for ciprofloxacin degradation: Multiple active site-triggered radical and non-radical mechanisms", Chem. Eng. J., 471, 144519. https://doi.org/10.1016/j.cej.2023.144519.
  17. Masud, M.A.A. and Shin, W.S. (2022), "Single and binary competitive sorption of phenanthrene and pyrene in natural and synthetic sorbents", J. Soil Groundwater Environ., 27(6), 11-21. https://doi.org/10.7857/JSGE.2022.27.6.011.
  18. Masud, M.A.A., Choi, J. and Shin, W.S. (2022), "Identification of tetrachloroethylene sorption behaviors in natural sorbents via sorption models", J. Soil Groundwater Environ., 27(6), 47-57. https://doi.org/doi.org/10.7857/JSGE.2022.27.6.047.
  19. Min, K.J., An, H.J., Lee, A.H., Shin, H.G., Park, K.Y. (2023). "Electrodialysis with a channeled stack for high strength cadmium removal from wastewater", Membr. Water Treat., 14(1), 47-54. https://doi.org/10.12989/mwt.2023.14.1.047
  20. Moon, J.K., Kim, K.W., Jung, C.H., Shul, Y.G. and Lee, E.H. (2000), "Preparation of organic-inorganic composite adsorbent beads for removal of radionuclides and heavy metal ions", J. Radioanal. Nucl. Chem., 246, 299-307. https://doi.org/10.1023/A:1006714322455.
  21. Nightingale, E.R. (1959), "Phenomenological theory of ion solvation. effective radii of hydrated ions", J. Phys. Chem., 63(9), 1381-1387. https://doi.org/10.1021/j150579a011.
  22. Nilchi, A., Saberi, R., Moradi, M., Azizpour, H. and Zarghami, R. (2011), "Adsorption of cesium on copper hexacyanoferrate-PAN composite ion exchanger from aqueous solution", Chem. Eng. J., 172(1), 572-580. https://doi.org/10.1016/j.cej.2011.06.011.
  23. Oh, S., Shin, W.S. and Choi, S.J. (2015), "Hydrous manganese oxide-polyacrylonitrile (HMO-PAN) composite for the treatment of radioactive laundry wastewater", J. Radioanal. Nucl. Chem., 303, 495-508. https://doi.org/10.1007/s10967-014-3583-2.
  24. Park, Y., Lee, Y.C., Shin, W.S. and Choi, S.J. (2010), "Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN)", Chem. Eng. J., 162(2), 685-695. https://doi.org/10.1016/j.cej.2010.06.026.
  25. Park, Y., Shin, W.S. and Choi, S.-J. (2013), "Removal of cobalt and strontium from groundwater by sorption onto fishbone", J. Radioanal. Nucl. Chem., 295, 789-799. https://doi.org/10.1007/s10967-012-1959-8.
  26. Radke, C.J. and Prausnitz, J.M., (1972), "Thermodynamics of multi-solute adsorption from dilute liquid solutions. AIChE J., 18(4), 761-768. https://doi.org/10.1002/aic.690180417.
  27. Rauwel, P. and Rauwel, E. (2019), "Towards the extraction of radioactive cesium-137 from water via graphene/CNT and nanostructured prussian blue hybrid nanocomposites: A review", Nanomaterials, 9(5), 682. https://doi.org/10.3390/nano9050682.
  28. Rumynin, V.G. and Nikulenkov, A.M. (2016), "Geological and physicochemical controls of the spatial distribution of partition coefficients for radionuclides (Sr-90, Cs-137, Co-60, Pu-239, 240 and Am-241) at a site of nuclear reactors and radioactive waste disposal (St. Petersburg region, Russian Federation) ", J. Environ. Radioact., 162-163, 205-218. https://doi.org/10.1016/j.jenvrad.2016.05.030.
  29. Sopapan, P., Lamdab, U., Akharawutchayanon, T., Issarapanacheewin, S., Yubonmhat, K., Silpradit, W., Katekaew, W. and Prasertchiewchan, N. (2023), "Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash", Nucl. Eng. Technol., 55(2), 516-522. https://doi.org/10.1016/j.net.2022.10.007.