DOI QR코드

DOI QR Code

Design of a Two-stage Differential cascode Power Amplifier with a Temperature Compensation function of High PAE with 2.4 GHz

2.4GHz 대역폭을 갖는 온도 보상 기능 탑재 고전력부가효율의 2 단 차동 캐스코드 전력증폭기 설계

  • Joon Hyung Park (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Jisung Jang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Howon Kim (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kang-Yoon Lee (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • Received : 2024.05.01
  • Accepted : 2024.07.26
  • Published : 2024.07.31

Abstract

This paper presents a study on a 2.4GHz differential cascode power amplifier(PA) fabricated using a 130nm CMOS process. This PA is designed for wireless power transmission applications and consists of two differential stages with custom-designed balun transformers for single-ended output. Balun transformers are utilized not only for the output stage but also for power match-ing between each stage. Additionally, a bias circuit with temperature compensation capability is added to maintain stable bias voltage in the 2.4GHz frequency band. As a result, it achieves an output power of 21.75 dBm with a power-added efficiency(PAE) of 40.9% at TT/40℃.

본 논문에서는 130nm CMOS 공정을 이용하여 제작된 2.4GHz 차동 캐스코드 전력 증폭기에 대한 연구를 제시하고 있다. 이 전력증폭기는 무선 전력 전송 응용을 위해 설계되었으며, 단일 종단 출력을 위한 발룬 트랜스포머 설계로 구성된 두 개의 차동 스테이지를 갖추고 있다. 출력 단 뿐만 아닌 각 단 사이의 전력 매칭을 위해 발룬 트랜스포머를 활용하고 있으며, 온도 보상이 가능한 바이어스 회로를 추가하여 2.4GHz 주파수 대역에서 안정적인 바이어스 전압을 유지한다. 이를 통해 TT/40℃에서 출력 전력은 21.75 dBm 이고 전력부가효율은 40.9%를 달성한다.

Keywords

Acknowledgement

이 논문은 2024 년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임 (P0012451, 2024 년 산업혁신인재성장지원 사업)

References

  1. D. Kang, B. Park, D. Kim, J. Kim, Y. Cho, and B. Kim, "Envelope-tracking CMOS power amplifier module for LTE applications," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 10, pp. 3763-3773, Oct. 2013.  https://doi.org/10.1109/TMTT.2013.2280186
  2. B. Razavi, "RF Microelectronics," 2nd ed. Prentice Hall, 2012, ch. 12, sec. 2, pp. 826-848. 
  3. I. Aoki, S. D. Kee, D B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 371-383, Mar. 2002  https://doi.org/10.1109/4.987090
  4. D. Chowdhury, C. D. Hull, O. B. Degani, Y. Wang, and A. M. Niknejad, "A fully integrated dual-mode highly linear 2.4 GHz CMOS power amplifier for 4G WiMAX applications," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3393-3402, Dec. 2009.  https://doi.org/10.1109/JSSC.2009.2032277
  5. Y. Ji, B. Kim, H. -J. Park and J. -Y. Sim, "A Study on Bandgap Reference Circuit With Leakage-Based PTAT Generation," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 11, pp. 2310-2321, Nov. 2018, doi:10.1109/TVLSI.2018.285280. 
  6. C.Liu, C.J.Richard Shi, "Design of the Class-E Power Amplifier Considering the Temperature Effect of the Transistor On-Resistance for Sensor Applications", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1705-1709, Mar. 2021.  https://doi.org/10.1109/TCSII.2021.3066963
  7. K. Yamauchi, Y. Iyama, M. Yamaguchi, Y. Ikeda, S. Urasaki and T. Takagi, "X-band MMIC power amplifier with an on-chip temperature-compensation circuit", IEEE Trans. Microw. Theory Techn., vol. 49, no. 12, pp. 2501-2506, Dec. 2001. https://doi.org/10.1109/22.971642