DOI QR코드

DOI QR Code

A Study on Benchmarking of DfMA Application Strategy for Optimum OSC Design - Focusing on considering overseas trends -

OSC 최적 설계를 위한 DfMA 적용 전략 벤치마킹 연구 - 국외 동향 고찰을 중심으로 -

  • Jung, Seoyoung (Department of Construction Policy Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Lee, Seulki (Department of Architectural Engineering, Kwangwoon University) ;
  • Yu, Jungho (Department of Architectural Engineering, Kwangwoon University)
  • 정서영 (한국건설기술연구원 건설정책연구소) ;
  • 이슬기 (광운대학교 건축공학과) ;
  • 유정호 (광운대학교 건축공학과)
  • Received : 2023.09.04
  • Accepted : 2024.02.19
  • Published : 2024.07.31

Abstract

Unlike conventional construction production methods, OSC (Off-Site Construction) have many restrictions depending on the production environment and technology, so it is important to develop a design plan considering these restrictions and select the optimal design alternative considering the overall efficiency of the building production process. Accordingly, the construction industry is paying attention to DfMA (Design for Manufacturing & Assembly) to derive the optimal design plan for the OSC project. Leading OSC countries such as Singapore and the United Kingdom have recognized the need to apply DfMA and presented DfMA guidelines and application strategies suitable for the characteristics of the OSC industry, and several researchers are conducting research to integrate DfMA into the construction industry. However, in the case of Korea, the need for industrial application and industrial application of DfMA is recognized, but there are no methods and tools necessary to implement the concept of DfMA in the design of actual construction projects. Therefore, this study aims to present the basic direction of strategy for applying DfMA and developing tools for the development of the domestic OSC industry by analyzing the development and application of DfMA in overseas construction. The results of this study can be used as basic data for the development of DfMA tools suitable for the domestic OSC industry and the establishment of policies related to DfMA in the future.

OSC (Off-Site Construction) 생산방식은 기존의 건설 생산 방식과 달리 생산환경 및 기술에 따른 제약사항들이 다수 존재하기 때문에 이와 같은 제약사항을 고려한 설계안을 개발하고, 건축 생산 과정의 전반적인 효율을 고려한 최적의 설계 대안을 선정하는 것이 중요하다. 이에 건설업계에서는 OSC 프로젝트의 최적 설계안을 도출하기 위해 DfMA (Design for Manufacturing & Assembly)에 주목하고 있다. 싱가포르, 영국 등 OSC 선도국에서는 DfMA 적용의 필요성을 인정하여 OSC 산업 특성에 적합한 DfMA 가이드라인 및 적용 전략을 제시하였으며, 여러 연구자들이 건설업에 DfMA를 융합하는 연구를 진행 중에 있다. 하지만, 국내의 경우에는 DfMA의 산업 적용 및 산업 적용에 대한 필요성은 인식하고 있으나, DfMA의 개념을 실제 건설 프로젝트의 설계에 구현하는데 필요한 방법 및 도구가 부재하다. 이에 본 연구에서는 해외 건설분야 DfMA 개발 및 적용 현황을 분석하여 벤치마킹하고, 전문가 의견 수렴과정을 거쳐서 국내 OSC 산업 발전을 위한 DfMA 적용 및 도구 개발을 위한 전략 수립의 기본 방향을 제시하였다. 본 연구의 결과는 향후 국내 OSC 산업에 적합한 DfMA 도구 개발 및 DfMA 관련 정책 수립의 기초자료로 활용할 수 있을 것이다.

Keywords

Acknowledgement

이 논문은 2023년도 광운대학교 우수연구자 지원 사업에 의해 연구되었음

References

  1. Arashpour, M., Bai, Y., Aranda-Mena, G., Bab-Hadiashar, A., Hosseini, R., and Kalutara, P. (2017). "Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configurations in off-site construction." Automation in Construction, 84, pp. 146-153. https://doi.org/10.1016/j.autcon.2017.08.032
  2. Azhar, S., Lukkad, M.Y., and Ahmad, I. (2013). "An investigation of critical factors and constraints for selecting modular construction over conventional stickbuilt technique." International Journal of Construction Education and Research, 9(3), pp. 203-225. https://doi.org/10.1080/15578771.2012.723115
  3. Sepehr, A., and Rocio, M.D. (2021). "BIM and DfMA: A Paradigm of New Opportunities." Sustainability, 13(17), 9591.
  4. Banks, C., Kotecha, R., Curtis, J., Dee, C., Pitt, N., and Papworth, R. (2018). "Enhancing high- rise residential construction through design for manufacture and assembly-a UK case study." Proceedings of the Institution of Civil Engineers-Management , Procurement and Law, 171(4), pp. 164-175. https://doi.org/10.1680/jmapl.17.00027
  5. Bing Qi, and Aaron Costin (2023). "BIM and OntologyBased DfMA Framework for Prefabricated Component." Buildings , 13(2), p. 394.
  6. Blismas, N.G., and Wakefield, R. (2009). "Drivers, constraints and the future of offsite manufacture in Australia." Construction Innovation, 9(1), pp. 72-83. https://doi.org/10.1108/14714170910931552
  7. Bogue, R. (2012). "Design for manufacture and assembly: background, capabilities and applications." Assembly Automation, 32(2), pp. 112-118. https://doi.org/10.1108/01445151211212262
  8. Boothroyd, G. (1994). "Product design for manufacture and assembly." Computer-Aided Design, 26(7), pp. 505-520. https://doi.org/10.1016/0010-4485(94)90082-5
  9. Boothroyd, G., Peter, D., and Winston, A. Knight (2010). Product design for manufacture and assembly, CRC press.
  10. Building and Construction Authority (2016). BIM for DfMA (Design for Manufacturing and Assembly) Essential Guide.
  11. Building and Constrcution Authority (2022). "Design for Manufacturing and Assembly (DfMA)." BCA, Singapore, accessed June 1, 2022, https://www1.bca.gov.sg/buildsg/productivity/design-for-manufacturing-andassembly-dfma.
  12. Chen, K., and Lu, W. (2018). "Design for manufacture and assembly oriented design approach to a curtain wall system: A case study of a commercial building in Wuhan, China." Sustainability, 10(7), 2211.
  13. Construction Industry Council (2021). About the DfMA Alliance [Website], https://www.cic.hk/eng/main/dfma_alliance/about/ (Nov. 2, 2021).
  14. Crowther, P. (1999). "Design for disassembly" Royal Australian Institute of Architects/BDP, Environment design guide.
  15. Emmatty, F.J., and Sarmah, S.P. (2012). "Modular product development through platform-based design and DfMA." Journal of Engineering Design, 23(9), pp. 696-714. https://doi.org/10.1080/09544828.2011.653330
  16. Evandro, A., Elena, S., Michele, S., and Giuseppe, M.D.G. (2020). "A BIM-based approach for DfMA in building construction: framework and first results on an Italian case study." Architectural Engineering and Design Management, 16:4, pp. 247-269. https://doi.org/10.1080/17452007.2020.1726725
  17. Fox, S., Marsh, L., and Cockerham, G. (2001). "Design for manufacture: a strategy for successful application to buildings." Construction Management and Economics , 19(5), pp. 493-502. https://doi.org/10.1080/01446193.2001.9709625
  18. Gao, S., Low, S.P., and Nair, K. (2018). "Design for manufacturing and assembly (DfMA): a preliminary study of factors influencing its adoption in Singapore." Architectural Engineering and Design Management, 14(6), pp. 440-456. https://doi.org/10.1080/17452007.2018.1502653
  19. Gbadamosi, A.Q., Mahamadu, A.M., Oyedele, L.O., Akinade, O.O., Manu, P., Mahdjoubi, L., and Aigbavboa, C. (2019). "Offsite construction: Developing a BIM-Based optimizer for assembly." Journal of Cleaner Production, 215, pp. 1180-1190. https://doi.org/10.1016/j.jclepro.2019.01.113
  20. Hyun, H., Kim, H,, and Kim, J. (2022). "Integrated OffSite Construction Design Process including DfMA Considerations." Sustainability, 14(7), 4084.
  21. International Code Council (2021). "ICC/MBI 1200-2021 Standard for Off-site Construction: Planning, Design, Fabrication and Assembly." ICC, Washington, D.C, USA.
  22. International Code Council (2021). "IICC/MBI 1205-2021 Standard for Off-site Construction: Inspection and Regulatory Compliance." ICC, Washington, D.C, USA.
  23. Jung, S., and Yu, J. (2022). "Design for Manufacturing and Assembly (DfMA) Checklists for Off-Site Construction (OSC) Projects." Sustainability, 14(19), 11988.
  24. Jung, S. (2022). "DfMA Assessment Model for Selecting Optimum Design in OSC projects." Kwangwoon University, Doctoral dissertation.
  25. Kim, M.K., McGovern, S., Belsky, M., Middleton, C., and Brilakis, I. (2016). "A suitability analysis of precast components for standardized bridge construction in the United Kingdom." Procedia Engineering, 164, pp. 188-195. https://doi.org/10.1016/j.proeng.2016.11.609
  26. Lu, W., Tan, T., Xu, J., Wang, J., Chen, K., Gao, S., and Xue, F. (2021). "Design for manufacture and assembly (DfMA) in construction: the old and the new." Architectural Engineering and Design Management, 17(1), pp. 77-91. https://doi.org/10.1080/17452007.2020.1768505
  27. Ministry of Housing and Urban-Rural Development (2019). "Standard for design of assembled housing (装配式混凝土建筑技术体系发展指南-居住建筑)" China Construction Industry Press; China.
  28. Ministry of Housing and Urban-Rural Development (2017). "Technical standard for assembled buildings with concrete structure (装配式建筑技术标准)" China Construction Industry Press, China.
  29. National Institute of Building Sciences Off-Site Construction Council. accessed May 7, 2022, https://www.nibs.org/oscc.
  30. Royal Institute of British Architects (2021). "DfMA Overlay to the RIBA Plan of Work 2nd edition." RIBA, London, UK.
  31. Royal Institute of British Architects (2013). "RIBA Plan of Work 2013: Designing for Manufacture and Assembly." RIBA, London, UK.
  32. Yan, P.S., Jati, U.D.H., and Bambang, P. (2019). "Evaluation of the use of prefabricated bridge elements with Design for Manufacture and Assembly (DfMA) criteria." MATEC Web of Conferences 270, 05006.
  33. Stoll, H.W. (1986). "Design for manufacture: An owerwiew." Applied Mechanics Reviews , 39(9), 1356.
  34. Swift, K.G., and Brown, N.J. (2013). "Implementation strategies for design for manufacture methodologies." Proceedings of the Institution of Mechanical Engineers , Part B: Journal of Engineering Manufacture, 217(6), pp. 827-833. https://doi.org/10.1243/09544050360673198
  35. Tan, T., Weisheng, L., Gangyi, T., Fan, X., Ke, C., Jinying, X., Jing, W., and Shang, G. (2020). "ConstructionOriented Design for Manufacture and Assembly (DfMA) Guidelines." Journal of Construction Engineering and Management, 146(8), 04020085.
  36. Wasim, M., Han, T.M., Huang, H., Madiyev, M., and Ngo, T.D. (2020). "An approach for sustainable, cost-effective and optimised material design for the prefabricated nonstructural components of residential buildings." Journal of Building Engineering, 32, 101474.