DOI QR코드

DOI QR Code

Energy Metabolism in Human Pluripotent Stem and Differentiated Cells Compared Using a Seahorse XF96 Extracellular Flux Analyzer

  • Hyun Kyu Kim (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Yena Song (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Minji Kye (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Byeongho Yu (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Sang Beom Park (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Ji Hyeon Kim (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Sung-Hwan Moon (Department of Animal Science and Technology College of Biotechnology, Chung-Ang University) ;
  • Hyungkyu Choi (Department of Animal Science and Technology College of Biotechnology, Chung-Ang University) ;
  • Jong-Seok Moon (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University) ;
  • Jae Sang Oh (Department of Neurosurgery, Uijeonbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Man Ryul Lee (Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University)
  • 투고 : 2023.10.17
  • 심사 : 2023.12.11
  • 발행 : 2024.05.30

초록

Evaluating cell metabolism is crucial during pluripotent stem cell (PSC) differentiation and somatic cell reprogramming as it affects cell fate. As cultured stem cells are heterogeneous, a comparative analysis of relative metabolism using existing metabolic analysis methods is difficult, resulting in inaccuracies. In this study, we measured human PSC basal metabolic levels using a Seahorse analyzer. We used fibroblasts, human induced PSCs, and human embryonic stem cells to monitor changes in basal metabolic levels according to cell number and determine the number of cells suitable for analysis. We evaluated normalization methods using glucose and selected the most suitable for the metabolic analysis of heterogeneous PSCs during the reprogramming stage. The response of fibroblasts to glucose increased with starvation time, with oxygen consumption rate and extracellular acidification rate responding most effectively to glucose 4 hours after starvation and declining after 5 hours of starvation. Fibroblasts and PSCs achieved appropriate responses to glucose without damaging their metabolism 2~4 and 2~3 hours after starvation, respectively. We developed a novel method for comparing basal metabolic rates of fibroblasts and PSCs, focusing on quantitative analysis of glycolysis and oxidative phosphorylation using glucose without enzyme inhibitors. This protocol enables efficient comparison of energy metabolism among cell types, including undifferentiated PSCs, differentiated cells, and cells undergoing cellular reprogramming, and addresses critical issues, such as differences in basal metabolic levels and sensitivity to normalization, providing valuable insights into cellular energetics.

키워드

과제정보

We express our sincere gratitude to Davide Cacciarelli from Broad Institute for generously providing us with the hiF-T cell line used in this study for human reprogramming research. We would also like to thank the Soonchunhyang Biomedical Research Core Facility of the Korea Basic Science Institute for their help with microscopy. Special thanks go to STEMOPIA.

참고문헌

  1. Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 2012;11:589-595 https://doi.org/10.1016/j.stem.2012.10.005
  2. Nishimura K, Fukuda A, Hisatake K. Mechanisms of the metabolic shift during somatic cell reprogramming. Int J Mol Sci 2019;20:2254
  3. Agathocleous M, Love NK, Randlett O, et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol 2012;14:859-864 https://doi.org/10.1038/ncb2531
  4. Facucho-Oliveira JM, Alderson J, Spikings EC, Egginton S, St John JC. Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J Cell Sci 2007;120(Pt 22):4025-4034 https://doi.org/10.1242/jcs.016972
  5. Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010;28:721-733
  6. Suhr ST, Chang EA, Tjong J, et al. Mitochondrial rejuvenation after induced pluripotency. PLoS One 2010;5:e14095
  7. Xu X, Duan S, Yi F, Ocampo A, Liu GH, Izpisua Belmonte JC. Mitochondrial regulation in pluripotent stem cells. Cell Metab 2013;18:325-332
  8. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 2015;518:413-416 https://doi.org/10.1038/nature13981
  9. Moussaieff A, Kogan NM, Aberdam D. Concise review: energy metabolites: key mediators of the epigenetic state of pluripotency. Stem Cells 2015;33:2374-2380 https://doi.org/10.1002/stem.2041
  10. Shiraki N, Shiraki Y, Tsuyama T, et al. Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 2014;19:780-794 https://doi.org/10.1016/j.cmet.2014.03.017
  11. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009;324:1076-1080 https://doi.org/10.1126/science.1164097
  12. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011;27:441-464 https://doi.org/10.1146/annurev-cellbio-092910-154237
  13. Ryall JG, Cliff T, Dalton S, Sartorelli V. Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell 2015;17:651-662 https://doi.org/10.1016/j.stem.2015.11.012
  14. Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update. EMBO J 2015;34:138-153 https://doi.org/10.15252/embj.201490446
  15. Madonna R, Gorbe A, Ferdinandy P, De Caterina R. Glucose metabolism, hyperosmotic stress, and reprogramming of somatic cells. Mol Biotechnol 2013;55:169-178 https://doi.org/10.1007/s12033-013-9668-2
  16. Cha Y, Han MJ, Cha HJ, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR200c-SIRT2 axis. Nat Cell Biol 2017;19:445-456 https://doi.org/10.1038/ncb3517
  17. Kuo TC, Huang KY, Yang SC, et al. Monocarboxylate transporter 4 is a therapeutic target in non-small cell lung cancer with aerobic glycolysis preference. Mol Ther Oncolytics 2020;18:189-201 https://doi.org/10.1016/j.omto.2020.06.012
  18. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular biology of the cell. 4th ed. Garland Science;2002.
  19. Tsogtbaatar E, Landin C, Minter-Dykhouse K, Folmes CDL. Energy metabolism regulates stem cell pluripotency. Front Cell Dev Biol 2020;8:87
  20. Gu W, Gaeta X, Sahakyan A, et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 2016;19:476-490 https://doi.org/10.1016/j.stem.2016.08.008
  21. Lees JG, Cliff TS, Gammilonghi A, et al. Oxygen regulates human pluripotent stem cell metabolic flux. Stem Cells Int 2019;2019:8195614
  22. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-1033 https://doi.org/10.1126/science.1160809
  23. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 2008;7:11-20 https://doi.org/10.1016/j.cmet.2007.10.002
  24. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-872 https://doi.org/10.1016/j.cell.2007.11.019
  25. Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 2013;153:1228-1238 https://doi.org/10.1016/j.cell.2013.05.006
  26. Wang Q, Xiong Y, Zhang S, et al. The dynamics of metabolic characterization in iPSC-derived kidney organoid differentiation via a comparative omics approach. Front Genet 2021;12:632810
  27. Kim YH, Heo JS, Han HJ. High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathways. J Cell Physiol 2006;209:94-102
  28. Folmes CD, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012;11:596-606
  29. Folmes CD, Nelson TJ, Martinez-Fernandez A, et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011;14:264-271 https://doi.org/10.1016/j.cmet.2011.06.011
  30. Kondoh H, Lleonart ME, Nakashima Y, et al. A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 2007;9:293-299 https://doi.org/10.1089/ars.2006.1467
  31. Prieto J, Garcia-Canaveras JC, Leon M, et al. c-MYC triggers lipid remodelling during early somatic cell reprogramming to pluripotency. Stem Cell Rev Rep 2021;17:2245-2261 https://doi.org/10.1007/s12015-021-10239-2
  32. Gu X, Ma Y, Liu Y, Wan Q. Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test. STAR Protoc 2020;2:100245
  33. Zhang J, Nuebel E, Wisidagama DR, et al. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc 2012;7:1068-1085 https://doi.org/10.1038/nprot.2012.048
  34. Ruas JS, Siqueira-Santos ES, Amigo I, Rodrigues-Silva E, Kowaltowski AJ, Castilho RF. Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS One 2016;11:e0150967
  35. Plitzko B, Loesgen S. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in culture cells for assessment of the energy metabolism. Bio Protoc 2018;8:e2850 
  36. Schmidt CA, Fisher-Wellman KH, Neufer PD. From OCR and ECAR to energy: perspectives on the design and interpretation of bioenergetics studies. J Biol Chem 2021;297:101140
  37. Kim HK, Ha TW, Lee MR. Single-cell transcriptome analysis as a promising tool to study pluripotent stem cell reprogramming. Int J Mol Sci 2021;22:5988
  38. Zhang C, Skamagki M, Liu Z, et al. Biological significance of the suppression of oxidative phosphorylation in induced pluripotent stem cells. Cell Rep 2017;21:2058-2065 https://doi.org/10.1016/j.celrep.2017.10.098
  39. Yu L, Ji KY, Zhang J, et al. Core pluripotency factors promote glycolysis of human embryonic stem cells by activating GLUT1 enhancer. Protein Cell 2019;10:668-680 https://doi.org/10.1007/s13238-019-0637-9
  40. Cacchiarelli D, Trapnell C, Ziller MJ, et al. Integrative analyses of human reprogramming reveal dynamic nature of induced pluripotency. Cell 2015;162:412-424  https://doi.org/10.1016/j.cell.2015.06.016