DOI QR코드

DOI QR Code

Guidelines for Manufacturing and Application of Organoids: Lung

  • 투고 : 2024.04.08
  • 심사 : 2024.05.07
  • 발행 : 2024.05.30

초록

The objective of standard guideline for utilization of human lung organoids is to provide the basic guidelines required for the manufacture, culture, and quality control of the lung organoids for use in non-clinical efficacy and inhalation toxicity assessments of the respiratory system. As a first step towards the utilization of human lung organoids, the current guideline provides basic, minimal standards that can promote development of alternative testing methods, and can be referenced not only for research, clinical, or commercial uses, but also by experts and researchers at regulatory institutions when assessing safety and efficacy.

키워드

과제정보

This research was supported by Ministry of Food and Drug Safety in 2023 (grant number: 23212MFDS265) and Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (grant number: 2021K1A4A7A0209775712).

참고문헌

  1. He P, Lim K, Sun D, et al. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022 Dec 8;185:4841-4860
  2. Nikolic MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development 2018;145:dev163485
  3. Pan H, Deutsch GH, Wert SE; Ontology Subcommittee;NHLBI Molecular Atlas of Lung Development Program Consortium. Comprehensive anatomic ontologies for lung development: a comparison of alveolar formation and maturation within mouse and human lung. J Biomed Semantics 2019;10:18
  4. Travaglini KJ, Nabhan AN, Penland L, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 2020;587:619-625
  5. Rock JR, Randell SH, Hogan BLM. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Model Mech 2010;3:545-556
  6. Madissoon E, Oliver AJ, Kleshchevnikov V, et al. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat Genet 2023;55:66-77
  7. Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 2022;604:111-119
  8. Basil MC, Cardenas-Diaz FL, Kathiriya JJ, et al. Human distal airways contain a multipotent secretory cell that can regenerate alveoli. Nature 2022;604:120-126
  9. Heo HR, Hong SH. Generation of macrophage containing alveolar organoids derived from human pluripotent stem cells for pulmonary fibrosis modeling and drug efficacy testing. Cell Biosci 2021;11:216
  10. Kim JH, Kim J, Kim WJ, Choi YH, Yang SR, Hong SH. Diesel particulate matter 2.5 induces epithelial-to-mesenchymal transition and upregulation of SARS-CoV-2 receptor during human pluripotent stem cell-derived alveolar organoid development. Int J Environ Res Public Health 2020;17:8410
  11. Rasaei R, Kim E, Kim JY, et al. Regulation of JAM2 expression in the lungs of streptozotocin-induced diabetic mice and human pluripotent stem cell-derived alveolar organoids. Biomedicines 2020;8:346
  12. Kim JH, An GH, Kim JY, et al. Human pluripotent stemcell-derived alveolar organoids for modeling pulmonary fibrosis and drug testing. Cell Death Discov 2021;7:48
  13. Kim J. Lo and behold, the lab-grown organs have arrived! Int J Stem Cells 2022;15:1-2
  14. Abo KM, Sainz de Aja J, Lindstrom-Vautrin J, et al. Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell-derived alveolar epithelium. JCI Insight 2022;7:e155589
  15. Huang J, Hume AJ, Abo KM, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell 2020;27:962-973.e7
  16. Zacharias WJ, Frank DB, Zepp JA, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 2018;555:251-255
  17. Sikkema L, Ramirez-Suastegui C, Strobl DC, et al. An integrated cell atlas of the lung in health and disease. Nat Med 2023;29:1563-1577
  18. Barkauskas CE, Cronce MJ, Rackley CR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 2013;123:3025-3036
  19. Rock JR, Onaitis MW, Rawlins EL, et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 2009;106:12771-12775
  20. Yang Y, Riccio P, Schotsaert M, et al. Spatial-temporal lineage restrictions of embryonic p63+ progenitors establish distinct stem cell pools in adult airways. Dev Cell 2018;44:752-761.e4
  21. Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 2018;359:1118-1123
  22. Choi J, Park JE, Tsagkogeorga G, et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 2020;27:366-382.e7
  23. Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol 2020;22:934-946
  24. Strunz M, Simon LM, Ansari M, et al. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. Nat Commun 2020;11:3559
  25. Wu H, Tang N. Stem cells in pulmonary alveolar regeneration. Development 2021;148:dev193458
  26. Burgess CL, Huang J, Bawa PS, et al. Generation of human alveolar epithelial type I cells from pluripotent stem cells. Cell Stem Cell 2024;31:657-675.e8
  27. Shiraishi K, Shah PP, Morley MP, et al. Biophysical forces mediated by respiration maintain lung alveolar epithelial cell fate. Cell 2023;186:1478-1492.e15
  28. Hogan BLM, Barkauskas CE, Chapman HA, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 2014;15:123-138
  29. Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 2010;18:8-23
  30. Gonzalez RF, Allen L, Gonzales L, Ballard PL, Dobbs LG. HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. J Histochem Cytochem 2010;58:891-901
  31. Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 2014;507:190-194
  32. Lim K, Donovan APA, Tang W, et al. Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease. Cell Stem Cell 2023;30:20-37.e9
  33. Lim K, Rutherford EN, Sun D, et al. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. bioRxiv [Preprint] 2023:2023.08.30.555522
  34. Olmeda B, Martinez-Calle M, Perez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling. Ann Anat 2017;209:78-92
  35. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J Physiol Lung Cell Mol Physiol 2004;286:L643-L649
  36. Salahudeen AA, Choi SS, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 2020;588:670-675
  37. Hawkins F, Kramer P, Jacob A, et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest 2017;127:2277-2294
  38. Hein RFC, Conchola AS, Fine AS, et al. Stable iPSC-derived NKX2-1+ lung bud tip progenitor organoids give rise to airway and alveolar cell types. Development 2022;149:dev200693 
  39. McCauley KB, Hawkins F, Serra M, Thomas DC, Jacob A, Kotton DN. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 2017;20:844-857.e6
  40. Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci 2009;116:27-35
  41. Jacob A, Morley M, Hawkins F, et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 2017;21:472-488.e10
  42. Gotoh S, Ito I, Nagasaki T, et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports 2014;3:394-403
  43. Hawkins FJ, Suzuki S, Beermann ML, et al. Derivation of airway basal stem cells from human pluripotent stem cells. Cell Stem Cell 2021;28:79-95.e8
  44. Nikolic MZ, Caritg O, Jeng Q, et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. Elife 2017;6:e26575
  45. Ministry of Health and Welfare. Bioethics and Safety Act [Internet]. Sejong: Korea Ministry of Government Legislation; 2022 Dec 30 [cited 2023 Nov 22]. Available from: https://www.law.go.kr/LSW//lsInfoP.do?lsiSeq=247359&ancYd=20221230&ancNo=00931&efYd=20221230&nwJoYnInfo=N&efGubun=Y&chrClsCd=010202&ancYnChk=0#0000