DOI QR코드

DOI QR Code

Generation of Radially or Azimuthally Polarized Laser Beams in a Yb:YAG Thin-disc Laser

  • Ye Jin Oh (Department of Photonics and Nanoelectronics, Hanyang University ERICA) ;
  • In Chul Park (Department of Photonics and Nanoelectronics, Hanyang University ERICA) ;
  • Eun Kyoung Park (Department of Photonics and Nanoelectronics, Hanyang University ERICA) ;
  • Jiri Muzik (HiLASE Centre, Institute of Physics of the Czech Academy of Sciences) ;
  • Yuya Koshiba (HiLASE Centre, Institute of Physics of the Czech Academy of Sciences) ;
  • Pawel Sikocinski (HiLASE Centre, Institute of Physics of the Czech Academy of Sciences) ;
  • Martin Smrz (HiLASE Centre, Institute of Physics of the Czech Academy of Sciences) ;
  • Tomas Mocek (HiLASE Centre, Institute of Physics of the Czech Academy of Sciences) ;
  • Hoon Jeong (Korea Institute of Industrial Technology) ;
  • Ji Won Kim (Department of Photonics and Nanoelectronics, Hanyang University ERICA)
  • Received : 2024.04.08
  • Accepted : 2024.06.29
  • Published : 2024.08.25

Abstract

A high-power Yb:YAG thin-disc laser with radial or azimuthal polarization incorporating an intracavity S-waveplate is reported. Depending on the rotational angle of the S-waveplate placed in the cavity, a Yb:YAG thin-disc laser yields 10.8 W and 10.2 W of continuous-wave outputs with radial and azimuthal polarization for an incident pump power of 131 W, corresponding to slope efficiencies of 22.9% and 23.7%, respectively. The output characteristics for each polarization state were investigated in detail by analyzing the insertion loss and the mode overlap efficiency due to the S-waveplate. Further prospects for power scaling will be discussed.

Keywords

Acknowledgement

National Research Foundation of Korea (NRF) (Grant no. 2021R1A2C1007277); European Union and the state budget of the Czech Republic under the project LasApp (Grant no. CZ.02.01.01/00/22_008/0004573).

References

  1. S. Quabis, R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun. 179, 1-7 (2000).  https://doi.org/10.1016/S0030-4018(99)00729-4
  2. G. Lerman, L. Stern, and U. Levy, "Generation and tight focusing of hybridly polarized vector beams," Opt. Express 18, 27650-27657 (2010).  https://doi.org/10.1364/OE.18.027650
  3. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000).  https://doi.org/10.1364/OE.7.000077
  4. L. Marrucci, C. Manzo, and D. Paparo, "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media," Phys. Rev. Lett. 96, 163905 (2006). 
  5. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). 
  6. Q. Zhan and J. R. Leger, "Focus shaping using cylindrical vector beams," Opt. Express 10, 324-331 (2002).  https://doi.org/10.1364/OE.10.000324
  7. C.-C. Sun and C.-K. Liu, "Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation," Opt. Lett. 28, 99-101 (2003).  https://doi.org/10.1364/OL.28.000099
  8. K. Yonezawa, Y. Kozawa, and S. Sato, "Compact laser with radial polarization using birefringent laser medium," Jpn. J. Appl. Phys. 46, 5160-5163 (2007).  https://doi.org/10.1143/JJAP.46.5160
  9. W. Shu, X. Ling, X. Fu, Y. Liu, Y. Ke, and H. Luo, "Polarization evolution of vector beams generated by q-plates," Photon. Res. 5, 64-72 (2017).  https://doi.org/10.1364/PRJ.5.000064
  10. S. S. Stafeev, V. V. Kotlyar, A. G. Nalimov, M. V. Kotlyar, and L. O'Faolain, "Subwavelength gratings for polarization conversion and focusing of laser light," Opt. Lett. 27, 32-41 (2017). 
  11. W. Shu, Y. Liu, Y. Ke, X. Ling, Z. Liu, B. Huang, H. Luo, and X. Yin, "Propagation model for vector beams generated by metasurfaces," Opt. Express 24, 21177-21189 (2016).  https://doi.org/10.1364/OE.24.021177
  12. U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, "Vector beams generated by tunable liquid crystal polarization holograms," J. Appl. Phys. 121, 153104 (2017). 
  13. V. G. Niziev, R. S. Chang, and A. V. Nesterov, "Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer," Appl. Opt. 45, 8393-8399 (2006).  https://doi.org/10.1364/AO.45.008393
  14. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, "Controlled generation of higher-order Poincare sphere beams from a laser," Nat. Photon. 10, 327-332 (2016).  https://doi.org/10.1038/nphoton.2016.37
  15. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).  https://doi.org/10.1364/OL.30.003063
  16. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, "Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disc lasers," Opt. Lett. 32, 3272-3274 (2007).  https://doi.org/10.1364/OL.32.003272
  17. I. Moshe, S. Jackel, and A. Meir, "Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects," Opt. Lett. 28, 807-809 (2003).  https://doi.org/10.1364/OL.28.000807
  18. J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, "High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output," Opt. Express 19, 14526-14531 (2011).  https://doi.org/10.1364/OE.19.014526
  19. M. Beresna, M. Gecevicius, and P. G. Kazansky, "Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass," Opt. Mater. Express 1, 783-795 (2011).  https://doi.org/10.1364/OME.1.000783
  20. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, "Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass," Appl. Phys. Lett. 98, 201101 (2011). 
  21. D. Lin, J. M. O. Daniel, M. Gecevicius, M. Beresna, P. G. Kazansky, and W. A. Clarkson, "Cladding-pumped ytterbium-doped fiber laser with radially polarized output," Opt. Lett. 39, 5359-5361 (2014).  https://doi.org/10.1364/OL.39.005359
  22. Y. J. Oh, J. S. Park, E. J. Park, J. W. Kim, and H. Jeong, "Diode-pumped Nd:YVO4 lasers with cylindrical vector vortex output in continuous-wave and Q-switched operation," Opt. Laser Technol. 164, 109483 (2023). 
  23. A. Giesen and J. Speiser, "Fifteen years of work on thin-disc lasers: results and scaling laws," IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).  https://doi.org/10.1109/JSTQE.2007.897180
  24. C. J. Saraceno, D. Sutter, T. Metzger, and M. A. Ahmed, "The amazing progress of high-power ultrafast thin-disc lasers," J. Eur. Opt. Soc.-Rapid Publ. 15, 15 (2019). 
  25. J. Speiser, "Thin disc lasers: History and prospects," Proc. SPIE 9893, 98930L (2016). 
  26. M. A. Ahmed, F. Beirow, A. Loescher, T. Dietrich, D. Bashir, D. Didychendo, A. Savchenko, C. Pruss, M. Fetisove, F. Li, P. Karvinen, M. Kuittinen, and T. Graf, "High-power thin-disc lasers emitting beams with axially-symmetric polarizations," Nanophotonics 11, 835-846 (2022).  https://doi.org/10.1515/nanoph-2021-0606
  27. Y. Yang, Y. Li, and C. Wang, "Generation and expansion of Laguerre-Gaussian beams," J. Opt. 51, 910-926 (2022).  https://doi.org/10.1007/s12596-022-00857-5
  28. W. Koechner, Solid-state Laser Engineering, 5th ed. (Springer Berlin, Germany, 1999). 
  29. J. W. Kim and W. A. Clarkson, "Selective generation of Laguerre-Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser," Opt. Commun. 296, 109-112 (2013). https://doi.org/10.1016/j.optcom.2013.01.046