DOI QR코드

DOI QR Code

Estimating the maximum pounding force for steel tall buildings in proximity subjected to wind

  • Tristen Brown (Department of Civil Engineering, Lakehead University) ;
  • Ahmed Elshaer (Department of Civil Engineering, Lakehead University) ;
  • Anas Issa (Department of Civil Engineering, United Arab Emirates University)
  • Received : 2023.11.16
  • Accepted : 2024.04.29
  • Published : 2024.07.25

Abstract

Pounding of structures may result in considerable damages, to the extent of total failure during severe lateral loading events (e.g., earthquakes and wind). With the new generation of tall buildings in densely occupied locations, wind-induced pounding becomes of higher risk due to such structures' large deflections. This paper aims to develop mathematical formulations to determine the maximum pounding force when two adjacent structures come into contact. The study will first investigate wind-induced pounding forces of two equal-height structures with similar dynamic properties. The wind loads will be extracted from the Large Eddy Simulation models and applied to a Finite Element Method model to determine deflections and pounding forces. A Genetic Algorithm is lastly utilized to optimize fitting parameters used to correlate the maximum pounding force to the governing structural parameters. The results of the wind-induced pounding show that structures with a higher natural frequency will produce lower maximum pounding forces than those of the same structure with a lower natural frequency. In addition, taller structures are more susceptible to stronger pounding forces at closer separation distances. It was also found that the complexity of the mathematical formula from optimization depends on achieving a more accurate mapping for the trained database.

Keywords

Acknowledgement

The authors of this study would first like to thank the Natural Science and Engineering Research Council of Canada (NSERC) for the financial support in completing this study. Secondly, the authors would also like to acknowledge the Digital Research Alliance of Canada for providing access to their high-performance computation facility and Siemens Digital Industries Software for the Computational Fluid Dynamic (CFD) simulation.

References

  1. Abdullah, M.M., Hanif, J. H., Richardson, A. and Sobanjo, J.(2001), "Use of a shared tuned mass damper (STMD) to reduce vibration and pounding in adjacent structures", Earthq. Eng. Struct. Dyn., 30(8), 1185-1201. https://doi.org/10.1002/eqe.58. 
  2. Aboshosha, H., Elshaer, A., Bitsuamlak, G.T. and El Damatty, A. (2015), "Consistent inflow turbulence generator for LES evaluation of wind-induced responses for tall buildings", J. Wind Eng. Ind. Aerod., 142, 198-216. https://doi.org/10.1016/j.jweia.2015.04.004. 
  3. Aly, A.M. and Abburu, S. (2015), "On the design of high-rise buildings for multihazard: Fundamental differences between wind and earthquake demand", Shock Vib., 2015. https://doi.org/10.1155/2015/148681. 
  4. American Institute of Steel Construction (2005), Manual of Steel Construction 
  5. Anagnostopoulos, S.A. (1988), "Pounding of buildings in series during earthquakes", Earthq. Eng. Struct. Dyn., 16(3), 443-456. https://doi.org/10.1002/eqe.4290160311. 
  6. Anagnostopoulos, S.A. and Spiliopoulos, K.V. (1992), "An investigation of earthquake induced pounding between adjacent buildings", Earthq. Eng. Struct. Dyn., 21(4), 289-302. https://doi.org/10.1002/eqe.4290210402. 
  7. Ansary, A. El, Damatty, A. El, & Nassef, A.(2011), "Optimum Shape and Design of Cooling Towers,"World Acad. Sci. Eng. Technol., 5(January), 12-21. http://waset.org/journals/waset/v60/v60-2.pdf 
  8. Ashrafi, A., Chowdhury, J. and Hangan, H. (2022), "Comparison of aerodynamic loading of a high-rise building subjected to boundary layer and tornadic winds", Wind Struct., 34(5), 395-405. https://doi.org/https://doi.org/10.12989/was.2022.34.5.395. 
  9. Bobby, S., Spence, S.M.J., Bernardini, E. and Kareem, A. (2014), "Performance-based topology optimization for wind-excited tall buildings: A framework", Eng. Struct., 74, 242-255. https://doi.org/10.1016/j.engstruct.2014.05.043. 
  10. Brown, T. and Elshaer, A. (2022), "Pounding of structures at proximity: A state-of-the-art review", J. Build. Eng., 48(October 2021), 103991. https://doi.org/10.1016/j.jobe.2022.103991. 
  11. Brown, T., Alanani, M., Elshaer, A. and Issa, A. (2024), "Formulation of separation distance to mitigate wind-induced pounding of tall buildings", Buildings, 14(2), 479. https://doi.org/10.3390/buildings14020479. 
  12. Chan, C.M., Chui, J.K.L. and Huang, M.F. (2009), "Integrated aerodynamic load determination and stiffness design optimization of tall buildings", Struct. Des. Tall Spec. Build., 18(1), 59-80. https://doi.org/10.1002/tal.397. 
  13. Chan, C.M., Huang, M.F. and Kwok, K.C.S. (2009), "Stiffness optimization for wind-induced dynamic serviceability design of tall buildings", J. Struct. Eng., 135(8), 985-997. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000036. 
  14. Chenna, R. and Ramancharla, P.K. (2018), "Damage assessment due to pounding between adjacent structures with equal and unequal heights", J. Civ. Struct. Heal. Monit., 8(4), 635-648. https://doi.org/10.1007/s13349-018-0296-1. 
  15. Civera, M., Pecorelli, M.L., Ceravolo, R., Surace, C. and Zanotti Fragonara, L. (2021), "A multi-objective genetic algorithm strategy for robust optimal sensor placement", Comput. Civ. Infrastruct. Eng., 36(9), 1185-1202. https://doi.org/10.1111/mice.12646. 
  16. Cui, W. and Caracoglia, L. (2018), "A fully-coupled generalized model for multi-directional wind loads on tall buildings: A development of the quasi-steady theory", J. Fluids Struct., 78, 52-68. https://doi.org/10.1016/j.jfluidstructs.2017.12.008. 
  17. Dagnew, A.K. and Bitsuamlak, G.T. (2013), "Computational evaluation of wind loads on buildings: A review", Wind Struct. 16(6), 629-660. https://doi.org/10.12989/was.2013.16.6.629. 
  18. Dagnew, A.K. and Bitsuamlak, G.T. (2014), "Computational evaluation of wind loads on a standard tall building using les", Wind Struct., 18(5), 567-598. https://doi.org/10.12989/was.2014.18.5.567. 
  19. Dai, K., Sheng, C., Zhao, Z., Yi, Z., Camara, A. and Bitsuamlak, G. (2017), "Nonlinear response history analysis and collapse mode study of a wind turbine tower subjected to tropical cyclonic winds", Wind Struct., 25(1), 79-100. https://doi.org/10.12989/was.2017.25.1.079. 
  20. Davis, L. (1991), Handbook of Genetic Algorithms. http://papers.cumincad.org/cgi-bin/works/paper/eaca. 
  21. DE Goldberg (2013), "Genetic algorithms", Pearson Educ. India.
  22. Ding, F., Kareem, A. and Wan, J. (2019), "Aerodynamic tailoring of structures using computational fluid dynamics", Struct. Eng. Int., 29(1), 26-39. https://doi.org/10.1080/10168664.2018.1522936. 
  23. Dragoiescu, C., Garber, J. and Kumar, K.S.(2006), "A comparison of force balance and pressure integration techniques for predicting wind-induced responses of tall buildings", Proc. Struct. Congr. Expo., 2006, 14. https://doi.org/10.1061/40889(201)14. 
  24. Edwards, L. (2009), Eureqa, the Robot Scientist. https://phys.org/news/2009-12-eureqa-robot-scientistvideo.html 
  25. Efraimiadou, S., Hatzigeorgiou, G.D. and Beskos, D.E. (2013), "Structural pounding between adjacent buildings subjected to strong ground motions. Part I: The effect of different structures arrangement", Earthq. Eng. Struct. Dyn., 42(10), 1509-1528. https://doi.org/10.1002/eqe. 
  26. Ellingwood, B. (1986), "Structural serviceability: A critical appraisal and research needs", J. Struct. Eng., 112(12), 2646-2664. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:12(2646). 
  27. Elshaer, A. and Bitsuamlak, G. (2018), "Multiobjective aerodynamic optimization of tall building openings for wind-induced load reduction", J. Struct. Eng., 144(10), 1-11. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002199. 
  28. Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A. and Dagnew, A. (2016), "LES evaluation of wind-induced responses for an isolated and a surrounded tall building", Eng. Struct., 115, 179-195. https://doi.org/10.1016/j.engstruct.2016.02.026. 
  29. Elshaer, A., Bitsuamlak, G. and Damatty, A. El (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019 
  30. ETABS(2018), . https://doi.org/https://www.csiamerica.com/products/etabs/enhancement/18 
  31. Franke, J. (2006), "Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment", Recomm. COST Action C14 Use CFD Predict. Pedestr. Wind Environ., 108, 529-532.  https://doi.org/10.5359/jawe.2006.529
  32. Franke, J., Hellsten, A., Schlunzen, K.H. and Carissimo, B. (2011), "The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary", Int. J. Environ. Pollut., 44(1-4), 419-427.  https://doi.org/10.1504/IJEP.2011.038443
  33. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991), "A dynamic subgrid-scale eddy viscosity model", Phys. Fluids A, 3(7), 1760-1765. https://doi.org/10.1063/1.857955. 
  34. Ghandil, M. and Aldaikh, H. (2017), "Damage-based seismic planar pounding analysis of adjacent symmetric buildings considering inelastic structure-soil-structure interaction", Earthq. Eng. Struct. Dyn., 46(7), 1141-1159. https://doi.org/10.1002/eqe.2848. 
  35. Holland, J.H.(1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. https://books.google.ca/books?id=5EgGaBkwvWcC&lr=&source=gbs_navlinks_s 
  36. Huang, M. (2017), "High-rise buildings under multi-hazard environment", In High-Rise Buildings under Multi-Hazard Environment: Assessment and Design for Optimal Performance, Springer Singapore. https://doi.org/10.1007/978-981-10-1744-5 
  37. Huang, M.F., Chan, C.M. and Lou, W.J. (2012), "Optimal performance-based design of wind sensitive tall buildings considering uncertainties", Comput. Struct., 98-99, 7-16. https://doi.org/10.1016/j.compstruc.2012.01.012. 
  38. Irwin, P., Kilpatrick, J., Robinson, J. and Frisque, A. (2008), "Wind and tall buildings: negatives and positives", Struct. Des. Tall Spec. Build., 17(5), 915-928. https://doi.org/10.1002/tal.482. 
  39. Irwin, P.A. (2009), "Wind engineering challenges of the new generation of super-tall buildings", J. Wind Eng. Ind. Aerod., 97(7-8), 328-334. https://doi.org/10.1016/j.jweia.2009.05.001. 
  40. Jankowski, R. (2005), "Non-linear viscoelastic modelling of earthquake-induced structural pounding", Earthq. Eng. Struct. Dyn., 34(6), 595-611. https://doi.org/10.1002/eqe.434. 
  41. Jankowski, R. (2006), "Pounding force response spectrum under earthquake excitation", Eng. Struct., 28(8), 1149-1161. https://doi.org/10.1016/j.engstruct.2005.12.005. 
  42. Jankowski, R. (2008a), "Comparison of numerical models of impact force for simulation of earthquake-induced structural pounding", In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): 5101 LNCS(PART 1), 710-717. https://doi.org/10.1007/978-3-540-69384-0_76. 
  43. Jankowski, R. (2008b), "Earthquake-induced pounding between equal height buildings with substantially different dynamic properties", Eng. Struct., 30(10), 2818-2829. https://doi.org/10.1016/j.engstruct.2008.03.006. 
  44. Jankowski, R. (2009), "Non-linear FEM analysis of earthquake-induced pounding between the main building and the stairway tower of the Olive View Hospital", Eng. Struct., 31(8), 1851-1864. https://doi.org/10.1016/j.engstruct.2009.03.024. 
  45. Jankowski, R. and Mahmoud, S. (2015), "Mitigation of pounding effects", Earthq. Induced Struct. Pound., 103-132. https://doi.org/10.1007/978-3-319-16324-6_5. 
  46. Karayannis, C.G. and Favvata, M.J. (2005), "Inter-story pounding between multistory reinforced concrete structures", Struct. Eng. Mech., 20(5), 505-526. https://doi.org/10.12989/sem.2005.20.5.505. 
  47. Karayannis, C.G. and Naoum, M.C. (2018), "Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction", Eng. Struct., 163(December 2017), 93-111. https://doi.org/10.1016/j.engstruct.2018.02.038. 
  48. Kasai, K. and Maison, B.F. (1997), "Building pounding damage during the 1989 Loma Prieta earthquake", Eng. Struct., 19(3), 195-207. https://doi.org/10.1016/S0141-0296(96)00082-X. 
  49. Keim, B. (2009), Download Your Own Robot Scientist. https://www.wired.com/2009/12/download-robot-scientist/. 
  50. Lam, K.M., H. Leung, M.Y. and Zhao, J.G. (2008), "Interference effects on wind loading of a row of closely spaced tall buildings", J. Wind Eng. Ind. Aerod., 96(5), 562-583. https://doi.org/10.1016/j.jweia.2008.01.010. 
  51. Lam, K.M., Wong, S.Y. and To, A.P. (2009), "Dynamic wind loading of H-shaped tall buildings", 7th Asia-Pacific Conf. Wind Eng. APCWE-VII, January 2009. https://www.researchgate.net/publication/255566090. 
  52. Lam, K.M., Zhao, J.G. and Leung, M.Y.H. (2011), "Wind-induced loading and dynamic responses of a row of tall buildings under strong interference", J. Wind Eng. Ind. Aerod., 99(5), 573-583. https://doi.org/10.1016/j.jweia.2011.02.006. 
  53. Leung, F.H.F., Lam, H.K., Ling, S.H. and Tam, P.K.S. (2003), "Tuning of the structure and parameters of a neural network using an improved genetic algorithm", IEEE Trans. Neural Networks, 14(1), 79-88. https://doi.org/10.1109/TNN.2002.804317. 
  54. Li, Y., Duan, R.B., Li, Q.S., Li, Y.G. and Huang, X. (2020), "Wind-resistant optimal design of tall buildings based on improved genetic algorithm", Structures, 27(July), 2182-2191. https://doi.org/10.1016/j.istruc.2020.08.036. 
  55. Liu, D.K., Yang, Y.L. and Li, Q.S. (2003), "Optimum positioning of actuators in tall buildings using genetic algorithm", Comput. Struct., 81(32), 2823-2827. https://doi.org/10.1016/j.compstruc.2003.07.002. 
  56. Mahmoud, S., Abd-Elhamed, A. and Jankowski, R. (2013), "Earthquake-induced pounding between equal height multi-storey buildings considering soil-structure interaction", Bull. Earthq. Eng., 11(4), 1021-1048. https://doi.org/10.1007/s10518-012-9411-6 
  57. Maison, B.F. and Kasai, K. (1990), "Analysis for a type of structural pounding", J. Struct. Eng., 116(4), 957-977. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:4(957). 
  58. Maison, B.F. and Kasai, K. (1992), "Dynamics of pounding when two buildings collide", Earthq. Eng. Struct. Dyn., 21(9), 771-786. https://doi.org/10.1002/eqe.4290210903. 
  59. Melbourne, W.H. (1980), "Comparison of measurements on the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6(1-2), 73-88. https://doi.org/https://doi.org/10.1016/0167-6105(80)90023-9. 
  60. Mettler, L.E. and Gregg, T.G. (1969), Population Genetics and Evolution, New Jers.: Prentice-Hall, Inc. https://www.cabdirect.org/cabdirect/abstract/19700104452. 
  61. Miari, M., Choong, K.K. and Jankowski, R. (2019), "Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures", Soil Dyn. Earthq. Eng., 121, 135-150. https://doi.org/https://doi.org/10.1016/j.soildyn.2019.02.024. 
  62. Miari, M., Choong, K.K. and Jankowski, R. (2021), "Seismic pounding between bridge segments: A state-of-the-art review", Arch. Comput. Methods Eng., 28(2), 495-504. https://doi.org/10.1007/s11831-019-09389-x. 
  63. Michalewicz, Z. (1994), "GAs: Why do they work?", In Genetic Algorithms + Data Structures = Evolution Programs, 43-53, Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-07418-3_4. 
  64. Murakami, S. (1998), "Overview of turbulence models applied in CWE-1997", J. Wind Eng. Ind. Aerod., 74-76, 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X. 
  65. Naserkhaki, S., Abdul Aziz, F.N.A. and Pourmohammad, H. (2012), "Parametric study on earthquake induced pounding between adjacent buildings", Struct. Eng. Mech., 43(4), 503-526. https://doi.org/10.12989/sem.2012.43.4.503. 
  66. Penzien, J. (1997), "Evaluation of building separation distance required to prevent pounding during strong earthquakes", Earthq. Eng. Struct. Dyn., 26(8), 849-858. https://doi.org/10.1002/(SICI)1096-9845(199708)26:8<849::AID-EQE680>3.0.CO;2-M. 
  67. Pham, D. and Karaboga, D. (2012), Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural NetworksSpringer Science & Business Media. https://books.google.ca/books?id=FlndBwAAQBAJ&dq=+D.+T.+Pham+and+D.+Karaboga,+Intelligent+Optimization+Techniques,+Genetic+Algorithms,+Tabu+Search,+Simulated+Annealing+and+Neural+Networks.&lr=&source=gbs_navlinks_s 
  68. Pourzeynali, S. and Zarif, M. (2008), "Multi-objective optimization of seismically isolated high-rise building structures using genetic algorithms", J. Sound Vib., 311(3-5), 1141-1160. https://doi.org/10.1016/j.jsv.2007.10.008. 
  69. Pourzeynali, S., Salimi, S. and Kalesar, H.E. (2013), "Robust multi-objective optimization design of TMD control device to reduce tall building responses against earthquake excitations using genetic algorithms", Sci. Iran., 20(2), 207-221. https://doi.org/10.1016/j.scient.2012.11.015. 
  70. Qin, W., Shi, J., Yang, X., Xie, J. and Zuo, S. (2022), "Characteristics of wind loads on Twin-Tower structure in comparison with single tower", Eng. Struct., 251(PA), 112780. https://doi.org/10.1016/j.engstruct.2021.112780. 
  71. Rahman, A., Fancy, S.F. and Bobby, S.A. (2012), "Analysis of drift due to wind loads and earthquake loads on tall structures by programming language c", Int. J. Sci. Eng. Res., 3(6), 6-9. https://www.researchgate.net/profile/Abdur_Rahman13/publication/265281589_Analysis_of_drift_due_to_wind_loads_and_earthquake_loads_on_tall_structures_by_programming_language_c/links/55fbf71308aeba1d9f3a1f45/Analysis-of-drift-due-towind-loads-and-earthqua. 
  72. Rezavandi, A. and Moghadam, A.S. (2007), "Experimental and numerical study on pounding effects and mitigation techniques for adjacent structures", Adv. Struct. Eng., 10(2), 121-134. https://doi.org/10.1260/136943307780429752. 
  73. Schmidt, M. and Lipson, H. (2009), "Distilling free-form natural laws from experimental data", Science (80-. ), 324(5923), 81-85. https://doi.org/10.1126/science.1165893. 
  74. SharcNet (2022), SHARCNET Is a Consortium of Colleges, Universities and Research Institutes Operating a Network of High-Performance Computer Clusters across South Western, Central and Northern Ontario [Online]. Available: <www.Sharcnet.Ca>; 2022. https://doi.org/https://www.sharcnet.ca/ 
  75. Smagorinsky, J. (1963), "GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS,"Mon. Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2. 
  76. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058. 
  77. Wolfgang, S. (1977), "High-rise building structures", High-Rise Build. Struct., John Wiley & Sons, New York. https://trove.nla.gov.au/work/10977531. 
  78. Zhou, L. and Haghighat, F. (2009), "Optimization of ventilation system design and operation in office environment, Part I: Methodology", Build. Environ., 44(4), 651-656. https://doi.org/10.1016/j.buildenv.2008.05.009. 
  79. Zhou, Y., Kijewski, T. and Kareem, A.(2003), "Aerodynamic loads on tall buildings: Interactive database", J. Struct. Eng., 129(3), 394-404. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(394). 
  80. Zhu, Z., Lei, W., Wang, Q., Tiwari, N. and Hazra, B. (2020), "Study on wind-induced vibration control of linked high-rise buildings by using TMDI", J. Wind Eng. Ind. Aerod., 205(June), 104306. https://doi.org/10.1016/j.jweia.2020.104306.