References
- Alvarez, A.J., Nieto, F., Nguyen, D.T., Owen, J.S. and Hernandez, S. (2019), "3D LES simulations of a static and vertically free-to-oscillate 4:1 rectangular cylinder: Effects of the grid resolution", J. Wind Eng. Ind. Aerod., 192, 31-44. https://doi.org/10.1016/j.jweia.2019.06.012.
- ANSYS (2012), ANSYS Fluent Theory Guide, Version 14.5, Ansys Inc.; USA.
- Bai, X. and Qin, W. (2014), "Using vortex strength wake oscillator in modelling of vortex induced vibrations in two degrees of freedom", Eur. J. Mech.- B/Fluids, 48, 165-173. https://doi.org/10.1016/j.euromechflu.2014.05.002.
- Bai, Y., Sun, D. and Lin, J. (2010), "Three dimensional numerical Simulations of long-span bridge aerodynamics, using block-iterative coupling and DES", Comp. Fluids, 39(9), 1549-1561. https://doi.org/10.1016/j.compfluid.2010.05.005.
- Bertani, G., Patruno, L. and Aguer, F. (2022), "Low-fidelity simulations in computational wind engineering: Shortcomings of 2D RANS in fully separated flows", Wind Struct., 34(6), 99-510. https://dx.doi.org/10.12989/was.2022.34.6.499.
- Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder oscillating in a flowing fluid", Proc. Royal Soc., 277(1368), 51-75. https://doi.org/10.1098/rspa.1964.0005.
- Blevins, R.D. (1990), Flow-induced Vibration, Van Nostrand Reinhold, New York, USA.
- Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
- Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
- Brusiani, F., de Miranda, S., Patruno, L., Ubertini, F. and Vaona, P. (2013), "On the evaluation of bridge deck flutter derivatives using RANS turbulence models", J. Wind Eng. Ind. Aerod., 119, 39-47. https://doi.org/10.1016/j.jweia.2013.05.002.
- Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055
- Crivellini, A., Nigro, A., Colombo, A., Ghidoni, A., Noventa, G., Cimarelli A. and Corsini. R. (2022), "Implicit large Eddy simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method", Wind Struct., 34(1), 59-72. https://doi.org/10.12989/was.2022.34.1.059.
- Deniz, S. and Staubli, T. (1997), "Oscillating rectangular and octagonal profiles: interaction of leading- and trailing-edge vortex formation", J. Fluid. Struct., 11(1), 3-31. https://doi.org/10.1006/jfls.1996.0065.
- Franke, J., Hellsten, A., Schlunzen, H.B., Carissimo, B. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", Cost action 732; Center for Marine and Atmospheric Sciences, Meteorological Institute, University of Hamburg, Hamburg, Germany.
- Frohlich, J. and von Terzi, D. (2008), "Hybrid LES/RANS methods for the simulation of turbulent flows", Prog. Aerosp. Sci., 44(5), 349-377. https://doi.org/10.1016/j.paerosci.2008.05.001.
- Goswami, I., Scanlan, R. and Jones, N. (1993), "Vortex-Induced vibration of circular cylinders. I: Experimental data", J. Eng. Mech., 119(11), 2270-2287. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2270). https://doi.org/10.1016/j.jweia.2010.12.016.
- Kang, W. and Sung, H.J. (2009), "Large-scale structures of turbulent flows over an open cavity", J. Fluid. Struct., 25(8), 1318-1333. https://doi.org/10.1016/j.jfluidstructs.2009.06.005.
- Koltzsch, K., Ihlenfeld, H. and Brechling, J. (1997), "Einfluss des Modelierungsmassstabes bei der Ermittlung von Windlastannahmen in Grenzschichtwindkanalen", Baukonstruktionen unter Windeinwirkung, Braunschweig, Germany.
- Kral, R., Pospisil, S. and Naprstek, J. (2016), "Experimental set-up for advanced aeroelastic tests on sectional models", Exp. Tech., 40, 3-13. https://doi.org/10.1007/s40799-015-0004-6.
- Kubo, Y., Hirata, K. and Mikawa, K. (1992), "Mechanism of aerodynamic vibrations of shallow bridge girder sections", J. Wind Eng. Ind. Aerod., 42(1-3), 1297-1308. https://doi.org/10.1016/0167-6105(92)90138-Z.
- Kubo, Y., Nogami, C., Yamaguchi, E., Kato, K. Niihara, Y. and Hayashida, K. (1999), "Study on Reynolds number effect of a cable-stayed bridge girder", Wind Engineering Into the 21st Century, Balkema, Rotterdam.
- Kuznetsov, S., Ribicic, M., Pospisil, S., Plut, M., Trush, A. and Kozmar, H. (2017), "Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices", Exp. Tech., 41, 643-661. https://doi.org/10.1007/s40799-017-0196-z.
- Larose, G.L. and D'Auteuil, A. (2006), "On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges", J. Wind Eng. Ind. Aerod., 94 (5), 365-376. https://doi.org/10.1016/j.jweia.2006.01.011.
- Lim, H.C., Castro I.P. and Hoxey, P. (2007), "Bluff bodies in deep turbulent boundary layers: Reynolds-number issues", J. Fluid Mech., 571, 97-118. https://doi.org/10.1017/S0022112006003223.
- Luo, S.C., Chew, Y.T. and Ng, Y.T. (2003), "Hysteresis phenomenon in the galloping oscillation of a square cylinder", J. Fluid. Struct., 18(1), 103-118. https://doi.org/10.1016/S0889-9746(03)00084-7.
- Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016
- Mannini, C., Soda, S. and Schewe, G. (2010), "Unsteady RANS Modeling of flow past a rectangular cylinder: Investigation of Reynolds number effects", Comp. Fluids, 39(9), 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.
- Matsuda, K., Cooper, K.R., Tanaka, H., Tohkushighe, M. and Iwasaki, T. (2001), "An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model", J. Wind Eng. Ind. Aerod., 89 (7-8), 619-632. https://doi.org/10.1016/S0167-6105(01)00062-9.
- Matsumoto, M., Yagi, T., Tamaki, H. and Tsubota, T. (2008), "Vortex-induced vibration and its effect on torsional flutter instability in the case of B/D=4 rectangular cylinder", J. Wind Eng. Ind. Aerod., 96(6-7), 971-983. https://doi.org/10.1016/j.jweia.2007.06.023.
- Menter, F.R., Kuntz, M. and Langtry, R. (2003), Ten Years of Industrial Experience with the SST Turbulence Model, Begell House Inc., Antalya.
- Nakamura, Y. and Matsukawa, T. (1987), "Vortex excitation of rectangular cylinders with a long side normal to the flow", J. Fluid Mech., 180, 171-191. https://doi.org/10.1017/S0022112087001770.
- Nakamura, Y. and Nakashima, M. (1986), "Vortex excitation of prisms with elongated rectangular, H and T cross-sections", J. Fluid Mech., 163, 149-169. https://doi.org/10.1017/S0022112086002252.
- Paidoussis, M.P. (2011), Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, New York.
- Schewe, G. (1998), "Nonlinear flow-induced resonances of an H-shaped section", J. Fluids Struct., 3(4), 327-348. https://doi.org/10.1016/S0889-9746(89)80015-5.
- Schewe, G. (2001), "Reynolds-number effects in flow around more-or-less bluff bodies", J. Wind Eng. Ind. Aerod., 89(14-15), 1267-1289. https://doi.org/10.1016/S0167-6105(01)00158-1.
- Schewe, G. and Larsen, A. (1998), "Reynolds number effects in the flow around a bluff bridge deck cross section", J. Wind Eng. Ind. Aerod., 74, 829-838. https://doi.org/10.1016/S0167-6105(98)00075-0.
- Smirnov, P.E. and Menter, F.R. (2009), "Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term", J. Turbomach., 131(4), 041010.1- 041010.8. https://doi.org/10.1115/1.3070573.
- Spurk, J.H., and Aksel, N. (1989), Stromungslehre, Springer Berlin, Heidelberg, Germany.
- Strecha, J. (2015), "Flow induced vibrations of a U-shaped belt", Ph.D. thesis, TU Wien, Austria.
- Strecha, J., Kuznetsov, S., Pospisil, S. and Steinruck, H. (2015), "Different regimes of the flow around a U-beam and their importance for flutter vibrations", Proceedings of the Conference on Modelling fluid Flow 2015, Budapest, Hungary.
- Tang, Y., Hua, X., Chen, Z. and Zhou, Y. (2019), "Experimental investigation of flutter characteristics of shallow 𝜋 section at post-critical regime", J. Fluid. Struct., 88, 275-291. https://doi.org/10.1016/j.jfluidstructs.2019.05.010.
- Tieleman, H.W. (2003), "Wind tunnel simulation of wind loading on low-rise structures: A review" J. Wind Eng. Ind. Aerod., 91(12-15), 1627-1649. https://doi.org/10.1016/j.jweia.2003.09.021.
- Xu, M., Patruno, L., Lo, Y. L., de Miranda, S. and Ubertini, F. (2022), "On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder", Wind Struct., 34(1), 1-14. https://doi.org/10.12989/was.2022.34.1.001.