DOI QR코드

DOI QR Code

Flow patterns and related vibrations around an inclined U-profile

  • Received : 2023.11.16
  • Accepted : 2024.04.29
  • Published : 2024.07.25

Abstract

This paper examines the flow characteristics around an inclined prism with a U-shaped cross-section ("U-profile") and investigates the connection between the flow and flow-induced vibrations. The study employs a combined approach that involves wind tunnel experiments and computational fluid dynamics (CFD) using an unsteady Reynolds-averaged Navier-Stokes (RANS) turbulence model. Distinct vortex formation patterns are observed in the flow field surrounding the stationary inclined profile. When the cavity of the profile faces away from the incoming flow, large vortices develop behind the profile. Conversely, when the cavity is oriented towards the oncoming flow, these vortices form within the cavity. Notably, due to the slow movement of these large vortices through the cavity, the frequency at which vortices are shed in the negative inclination case is lower compared to the positive inclination, where they form in the wake. Wind tunnel experiments reveal an intermittent transition between the two vortex formation patterns at zero inclination. Large vortices sporadically emerge both in the cavity and behind the profile. The simulation results demonstrate that when these large vortices occur at a frequency close to the structure's natural frequency, they induce prominent pitch vibrations. This phenomenon is also sought after and presented in coupled vibration experiments. Additionally, the simulations indicate that when the natural frequency of the structure is considerably lower than the vortex shedding frequency, this type of vibration can be observed.

Keywords

References

  1. Alvarez, A.J., Nieto, F., Nguyen, D.T., Owen, J.S. and Hernandez, S. (2019), "3D LES simulations of a static and vertically free-to-oscillate 4:1 rectangular cylinder: Effects of the grid resolution", J. Wind Eng. Ind. Aerod., 192, 31-44. https://doi.org/10.1016/j.jweia.2019.06.012.
  2. ANSYS (2012), ANSYS Fluent Theory Guide, Version 14.5, Ansys Inc.; USA.
  3. Bai, X. and Qin, W. (2014), "Using vortex strength wake oscillator in modelling of vortex induced vibrations in two degrees of freedom", Eur. J. Mech.- B/Fluids, 48, 165-173. https://doi.org/10.1016/j.euromechflu.2014.05.002.
  4. Bai, Y., Sun, D. and Lin, J. (2010), "Three dimensional numerical Simulations of long-span bridge aerodynamics, using block-iterative coupling and DES", Comp. Fluids, 39(9), 1549-1561. https://doi.org/10.1016/j.compfluid.2010.05.005.
  5. Bertani, G., Patruno, L. and Aguer, F. (2022), "Low-fidelity simulations in computational wind engineering: Shortcomings of 2D RANS in fully separated flows", Wind Struct., 34(6), 99-510. https://dx.doi.org/10.12989/was.2022.34.6.499.
  6. Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder oscillating in a flowing fluid", Proc. Royal Soc., 277(1368), 51-75. https://doi.org/10.1098/rspa.1964.0005.
  7. Blevins, R.D. (1990), Flow-induced Vibration, Van Nostrand Reinhold, New York, USA.
  8. Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: A computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
  9. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5:1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
  10. Brusiani, F., de Miranda, S., Patruno, L., Ubertini, F. and Vaona, P. (2013), "On the evaluation of bridge deck flutter derivatives using RANS turbulence models", J. Wind Eng. Ind. Aerod., 119, 39-47. https://doi.org/10.1016/j.jweia.2013.05.002.
  11. Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055
  12. Crivellini, A., Nigro, A., Colombo, A., Ghidoni, A., Noventa, G., Cimarelli A. and Corsini. R. (2022), "Implicit large Eddy simulations of a rectangular 5:1 cylinder with a high-order discontinuous Galerkin method", Wind Struct., 34(1), 59-72. https://doi.org/10.12989/was.2022.34.1.059.
  13. Deniz, S. and Staubli, T. (1997), "Oscillating rectangular and octagonal profiles: interaction of leading- and trailing-edge vortex formation", J. Fluid. Struct., 11(1), 3-31. https://doi.org/10.1006/jfls.1996.0065.
  14. Franke, J., Hellsten, A., Schlunzen, H.B., Carissimo, B. (2007), "Best practice guideline for the CFD simulation of flows in the urban environment", Cost action 732; Center for Marine and Atmospheric Sciences, Meteorological Institute, University of Hamburg, Hamburg, Germany.
  15. Frohlich, J. and von Terzi, D. (2008), "Hybrid LES/RANS methods for the simulation of turbulent flows", Prog. Aerosp. Sci., 44(5), 349-377. https://doi.org/10.1016/j.paerosci.2008.05.001.
  16. Goswami, I., Scanlan, R. and Jones, N. (1993), "Vortex-Induced vibration of circular cylinders. I: Experimental data", J. Eng. Mech., 119(11), 2270-2287. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2270). https://doi.org/10.1016/j.jweia.2010.12.016.
  17. Kang, W. and Sung, H.J. (2009), "Large-scale structures of turbulent flows over an open cavity", J. Fluid. Struct., 25(8), 1318-1333. https://doi.org/10.1016/j.jfluidstructs.2009.06.005.
  18. Koltzsch, K., Ihlenfeld, H. and Brechling, J. (1997), "Einfluss des Modelierungsmassstabes bei der Ermittlung von Windlastannahmen in Grenzschichtwindkanalen", Baukonstruktionen unter Windeinwirkung, Braunschweig, Germany.
  19. Kral, R., Pospisil, S. and Naprstek, J. (2016), "Experimental set-up for advanced aeroelastic tests on sectional models", Exp. Tech., 40, 3-13. https://doi.org/10.1007/s40799-015-0004-6.
  20. Kubo, Y., Hirata, K. and Mikawa, K. (1992), "Mechanism of aerodynamic vibrations of shallow bridge girder sections", J. Wind Eng. Ind. Aerod., 42(1-3), 1297-1308. https://doi.org/10.1016/0167-6105(92)90138-Z.
  21. Kubo, Y., Nogami, C., Yamaguchi, E., Kato, K. Niihara, Y. and Hayashida, K. (1999), "Study on Reynolds number effect of a cable-stayed bridge girder", Wind Engineering Into the 21st Century, Balkema, Rotterdam.
  22. Kuznetsov, S., Ribicic, M., Pospisil, S., Plut, M., Trush, A. and Kozmar, H. (2017), "Flow and turbulence control in a boundary layer wind tunnel using passive hardware devices", Exp. Tech., 41, 643-661. https://doi.org/10.1007/s40799-017-0196-z.
  23. Larose, G.L. and D'Auteuil, A. (2006), "On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges", J. Wind Eng. Ind. Aerod., 94 (5), 365-376. https://doi.org/10.1016/j.jweia.2006.01.011.
  24. Lim, H.C., Castro I.P. and Hoxey, P. (2007), "Bluff bodies in deep turbulent boundary layers: Reynolds-number issues", J. Fluid Mech., 571, 97-118. https://doi.org/10.1017/S0022112006003223.
  25. Luo, S.C., Chew, Y.T. and Ng, Y.T. (2003), "Hysteresis phenomenon in the galloping oscillation of a square cylinder", J. Fluid. Struct., 18(1), 103-118. https://doi.org/10.1016/S0889-9746(03)00084-7.
  26. Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016
  27. Mannini, C., Soda, S. and Schewe, G. (2010), "Unsteady RANS Modeling of flow past a rectangular cylinder: Investigation of Reynolds number effects", Comp. Fluids, 39(9), 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.
  28. Matsuda, K., Cooper, K.R., Tanaka, H., Tohkushighe, M. and Iwasaki, T. (2001), "An investigation of Reynolds number effects on the steady and unsteady aerodynamic forces on a 1:10 scale bridge deck section model", J. Wind Eng. Ind. Aerod., 89 (7-8), 619-632. https://doi.org/10.1016/S0167-6105(01)00062-9.
  29. Matsumoto, M., Yagi, T., Tamaki, H. and Tsubota, T. (2008), "Vortex-induced vibration and its effect on torsional flutter instability in the case of B/D=4 rectangular cylinder", J. Wind Eng. Ind. Aerod., 96(6-7), 971-983. https://doi.org/10.1016/j.jweia.2007.06.023.
  30. Menter, F.R., Kuntz, M. and Langtry, R. (2003), Ten Years of Industrial Experience with the SST Turbulence Model, Begell House Inc., Antalya.
  31. Nakamura, Y. and Matsukawa, T. (1987), "Vortex excitation of rectangular cylinders with a long side normal to the flow", J. Fluid Mech., 180, 171-191. https://doi.org/10.1017/S0022112087001770.
  32. Nakamura, Y. and Nakashima, M. (1986), "Vortex excitation of prisms with elongated rectangular, H and T cross-sections", J. Fluid Mech., 163, 149-169. https://doi.org/10.1017/S0022112086002252.
  33. Paidoussis, M.P. (2011), Fluid-Structure Interactions: Cross-Flow-Induced Instabilities, Cambridge University Press, New York.
  34. Schewe, G. (1998), "Nonlinear flow-induced resonances of an H-shaped section", J. Fluids Struct., 3(4), 327-348. https://doi.org/10.1016/S0889-9746(89)80015-5.
  35. Schewe, G. (2001), "Reynolds-number effects in flow around more-or-less bluff bodies", J. Wind Eng. Ind. Aerod., 89(14-15), 1267-1289. https://doi.org/10.1016/S0167-6105(01)00158-1.
  36. Schewe, G. and Larsen, A. (1998), "Reynolds number effects in the flow around a bluff bridge deck cross section", J. Wind Eng. Ind. Aerod., 74, 829-838. https://doi.org/10.1016/S0167-6105(98)00075-0.
  37. Smirnov, P.E. and Menter, F.R. (2009), "Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term", J. Turbomach., 131(4), 041010.1- 041010.8. https://doi.org/10.1115/1.3070573.
  38. Spurk, J.H., and Aksel, N. (1989), Stromungslehre, Springer Berlin, Heidelberg, Germany.
  39. Strecha, J. (2015), "Flow induced vibrations of a U-shaped belt", Ph.D. thesis, TU Wien, Austria.
  40. Strecha, J., Kuznetsov, S., Pospisil, S. and Steinruck, H. (2015), "Different regimes of the flow around a U-beam and their importance for flutter vibrations", Proceedings of the Conference on Modelling fluid Flow 2015, Budapest, Hungary.
  41. Tang, Y., Hua, X., Chen, Z. and Zhou, Y. (2019), "Experimental investigation of flutter characteristics of shallow 𝜋 section at post-critical regime", J. Fluid. Struct., 88, 275-291. https://doi.org/10.1016/j.jfluidstructs.2019.05.010.
  42. Tieleman, H.W. (2003), "Wind tunnel simulation of wind loading on low-rise structures: A review" J. Wind Eng. Ind. Aerod., 91(12-15), 1627-1649. https://doi.org/10.1016/j.jweia.2003.09.021.
  43. Xu, M., Patruno, L., Lo, Y. L., de Miranda, S. and Ubertini, F. (2022), "On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder", Wind Struct., 34(1), 1-14. https://doi.org/10.12989/was.2022.34.1.001.