참고문헌
- Azimi, P. and Yazdani, M. (2022), "Calculation of dynamic amplification factor for railway concrete and masonry arch bridges subjected to high-speed trains (Article)", Periodica Polytechnica Civil Engineering, 66(3), 876-890. https://doi.org/10.3311/PPci.19494.
- Chen, W.F. (2007), Plasticity in reinforced concrete. J. Ross Publishing.
- Committee, A. (2008), 'Building code requirements for structural concrete (ACI 318-08) and commentary'. American Concrete Institute.
- D'Ambrisi, A., Focacci, F. and Caporale, A. (2013), "Strengthening of masonry-unreinforced concrete railway bridges with PBO-FRCM materials", Compos. Struct., 102, 193-204. https://doi.org/10.1016/j.compstruct.2013.03.002.
- Drosopoulos, G.A., Stavroulakis, G.E. and Massalas, C.V. (2007), "FRP reinforcement of stone arch bridges: Unilateral contact models and limit analysis", Compos. Part B: Eng., 38(2), 144-151. https://doi.org/10.1016/j.compositesb.2006.08.004.
- Gonen, S. and Soyoz, S. (2021). "Seismic analysis of a masonry arch bridge using multiple methodologies", Eng. Struct., 226, 111354. https://doi.org/10.1016/j.engstruct.2020.111354.
- Gonen, S. and Soyoz, S. (2022), "Reliability-based seismic performance of masonry arch bridges", Struct. Infrastruct. Eng., 18(12), 1658-1673. https://doi.org/10.1080/15732479.2021.1918726.
- Homaei, F. and Yazdani, M. (2020), "The probabilistic seismic assessment of aged concrete arch bridges: The role of soil-structure interaction", Structures, 28, 894-904. https://doi.org/10.1016/j.istruc.2020.09.038.
- Jahangiri, V., Yazdani, M. and Marefat, M.S. (2018), "Intensity measures for the seismic response assessment of plain concrete arch bridges", Bull. Earthq. Eng., 16(9), 4225-4248. https://doi.org/10.1007/s10518-018-0334-8.
- Magenes, G. and Calvi, G.M. (1997), "In-plane seismic response of brick masonry walls", Earthq. Eng. Struct. D., 26(11), 1091-1112. https://doi.org/10.1002/(SICI)1096-9845(199711)26:11<1091::AIDEQE693>3.0.CO;2-6.
- Mahmoudi Moazam, A., Hasani, N. and Yazdani, M. (2017), "3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties (Article)", Adv. Comput. Design, 2(4), 257-271. https://doi.org/10.12989/acd.2017.2.4.257.
- Mahmoudi Moazam, A., Hasani, N. and Yazdani, M. (2018), "Three-dimensional modelling for seismic assessment of plain concrete arch bridges", Proceedings of the Institution of Civil Engineers - Civil Engineering, 171(3), 135-143. https://doi.org/10.1680/jcien.17.00048.
- Marefat, M.S., Yazdani, M. and Jafari, M. (2019), "Seismic assessment of small to medium spans plain concrete arch bridges", Eur. J. Environ. Civil Eng., 23(7), 894-915. https://doi.org/10.1080/19648189.2017.1320589.
- Panian, R. and Yazdani, M. (2020), "Estimation of the service load capacity of plain concrete arch bridges using a novel approach: Stress intensity factor", Structures, 27, 1521-1534. https://doi.org/10.1016/j.istruc.2020.07.055.
- Panto, B., Grosman, S., Macorini, L. and Izzuddin, B.A. (2022), "A macro-modelling continuum approach with embedded discontinuities for the assessment of masonry arch bridges under earthquake loading", Eng. Struct., 269, 114722. https://doi.org/10.1016/j.engstruct.2022.114722.
- Sarhosis, V., De Santis, S. and de Felice, G. (2016), "A review of experimental investigations and assessment methods for masonry arch bridges", Struct. Infrastruct. Eng., 12(11), 1439-1464. doi:10.1080/15732479.2015.1136655.
- Sarhosis, V., Forgacs, T. and Lemos, J.V. (2019), "A discrete approach for modelling backfill material in masonry arch bridges", Comput. Struct., 224, 106108. https://doi.org/10.1016/j.compstruc.2019.106108.
- Simoncello, N., Zampieri, P., Gonzalez-Libreros, J., Perboni, S. and Pellegrino, C. (2020), "Numerical analysis of an FRP-strengthened masonry arch bridge (Article)", Front. Built Environ., 6. https://doi.org/10.3389/fbuil.2020.00007.
- Wang, J. and Melbourne, C. (2010), "Mechanics of MEXE method for masonry arch bridge assessment", Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 163(3), 187-202. https://doi.org/10.1680/eacm.2010.163.3.187.
- Wang, Z., Yang, J., Zhou, J., Yan, K., Zhang, Z. and Zou, Y. (2022), "Strengthening of existing stone arch bridges using UHPC: Theoretical analysis and case study", Structures, 43, 805-821. doi:https://doi.org/10.1016/j.istruc.2022.06.055.
- Yazdani, M. (2021), "Three-dimensional nonlinear finite element analysis for load-carrying capacity prediction of a railway arch bridge", Int. J. Civil Eng., 19(7), 823-836. https://doi.org/10.1007/s40999-021-00608-w.
- Yazdani, M. and Habibi, H. (2023), "Residual capacity evaluation of masonry arch bridges by extended finite element method", Struct. Eng. Int., 33(1), 183-194. https://doi.org/10.1080/10168664.2021.1944454.
- Yazdani, M. and Jahangiri, V. (2020), "Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges (Article)", Earthq. Struct., 19(5), 379-393. https://doi.org/10.12989/eas.2020.19.5.379.
- Zampieri, P., Zanini, M.A. and Modena, C. (2015), "Simplified seismic assessment of multi-span masonry arch bridges", Bull. Earthq. Eng., 13(9), 2629-2646. https://doi.org/10.1007/s10518-015-9733-2.